International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Clémence Chevignard

Publications

Year
Venue
Title
2025
EUROCRYPT
A reduction from Hawk to the principal ideal problem in a quaternion algebra
In this article we present a non-uniform reduction from rank-2 module-LIP over Complex Multiplication fields, to a variant of the Principal Ideal Problem, in some fitting quaternion algebra. This reduction is classical deterministic polynomial-time in the size of the inputs. The quaternion algebra in which we need to solve the variant of the principal ideal problem depends on the parameters of the module-LIP problem, but not on the problem's instance. Our reduction requires the knowledge of some special elements of this quaternion algebras, which is why it is non-uniform. In some particular cases, these elements can be computed in polynomial time, making the reduction uniform. This is the case for the Hawk signature scheme: we show that breaking Hawk is no harder than solving a variant of the principal ideal problem in a fixed quaternion algebra (and this reduction is uniform).
2025
CRYPTO
Reducing the Number of Qubits in Quantum Factoring
This paper focuses on the optimization of the number of logical qubits in quantum algorithms for factoring and computing discrete logarithms in $\mathbb{Z}_N^*$. These algorithms contain an exponentiation circuit modulo $N$, which is responsible for most of their cost, both in qubits and operations. In this paper, we show that using only $o(\log N)$ work qubits, one can obtain the least significant bits of the modular exponentiation output. We combine this result with May and Schlieper's truncation technique (ToSC 2022) and the Eker{\aa}-H{\aa}stad variant of Shor's algorithm (PQCrypto 2017) to solve the discrete logarithm problem in $\mathbb{Z}_N^*$ using only $d + o(\log N)$ qubits, where $d$ is the bit-size of the logarithm. Consequently we can factor $n$-bit RSA moduli using $n/2 + o(n)$ qubits, while current envisioned implementations require about $2n$ qubits. Our algorithm uses a Residue Number System and succeeds with a parametrizable probability. Being completely classical, we have implemented and tested it. For RSA factorization, we can reach a gate count $\mathcal{O}(n^3)$ for a depth $\mathcal{O}(n^2 \log^3 n)$, which then has to be multiplied by $\mathcal{O}(\log n)$ (the number of measurement results required by Eker{\aa}-H{\aa}stad). To factor an RSA-2048 instance, we estimate that 1730 logical qubits and $2^{36}$ Toffoli gates will suffice for a single run, and the algorithm needs on average 40 runs. To solve a discrete logarithm instance of 224 bits (112-bit classical security) in a safe-prime group of 2048 bits, we estimate that 684 logical qubits would suffice, and 20 runs with $2^{32}$ Toffoli gates each.
2024
ASIACRYPT
Reducing the Number of Qubits in Quantum Information Set Decoding
This paper presents an optimization of the memory cost of the quantum \emph{Information Set Decoding} (ISD) algorithm proposed by Bernstein (PQCrypto 2010), obtained by combining Prange's ISD with Grover's quantum search. When the code has constant rate and length $n$, this algorithm essentially performs a quantum search which, at each iterate, solves a linear system of dimension $\mathcal{O}(n)$. The typical code lengths used in post-quantum public-key cryptosystems range from $10^3$ to $10^5$. Gaussian elimination, which was used in previous works, needs $\mathcal{O}(n^2)$ space to represent the matrix, resulting in millions or billions of (logical) qubits for these schemes. In this paper, we propose instead to use the algorithm for sparse matrix inversion of Wiedemann (IEEE Trans. inf. theory 1986). The interest of Wiedemann's method is that one relies only on the implementation of a matrix-vector product, where the matrix can be represented in an implicit way. This is the case here. We propose two main trade-offs, which we have fully implemented, tested on small instances, and benchmarked for larger instances. The first one is a quantum circuit using $\mathcal{O}(n)$ qubits, $\mathcal{O}(n^3)$ Toffoli gates like Gaussian elimination, and depth $\mathcal{O}(n^2 \log n)$. The second one is a quantum circuit using $\mathcal{O}(n \log^2 n)$ qubits, $\mathcal{O}(n^3)$ gates in total but only $\mathcal{O}( n^2 \log^2 n)$ Toffoli gates, which relies on a different representation of the search space. As an example, for the smallest Classic McEliece parameters we estimate that the Quantum Prange's algorithm can run with 18098 qubits, while previous works would have required at least half a million qubits.