International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Baitian Li

Publications and invited talks

Year
Venue
Title
2025
TCC
Scalable Multi-Server Private Information Retrieval
We revisit multi-server Private Information Retrieval (PIR), where the client interacts with $S$ non-colluding servers. Ideally, we want a *scalable* family of multi-server PIR schemes where all the performance metrics of the scheme decrease as $S$ increases. However, no prior work achieved scalability under any setting, and any hardness assumption. In this paper we construct new multi-server, information-theoretically secure *scalable* PIR schemes for three natural settings. First, we give a construction where all the performance metrics scale at equal rate. Second, we give a scalable construction that minimizes the per-query bandwidth. Third, we give a scalable construction that minimizes the per-query online bottleneck cost (the maximum of the bandwidth and computation). For the first two settings, our constructions are *doubly efficient* with only a super-constant number of servers. In comparison, the best known prior works in the information-theoretic setting required super-logarithmically many servers to achieve the doubly efficient notion. Our techniques for achieving scalable PIR also enable us to advance the state of the art in the polynomial space setting. In this setting, we show how to improve the space consumption of prior works by a polynomial factor while preserving all other metrics. Further, we show a new balancing technique that allows us to further minimize the bandwidth per query by trading off the computation and server space, thus enabling a more smooth tradeoff between the metrics and generalizing the design space.