International Association for Cryptologic Research

International Association
for Cryptologic Research


Mira Meyerovich


How to Win the Clone Wars: \\ Efficient Periodic n-Times Anonymous Authentication
We create a credential system that lets a user anonymously authenticate at most $n$ times in a single time period. A user withdraws a dispenser of $n$ e-tokens. She shows an e-token to a verifier to authenticate herself; each e-token can be used only once, however, the dispenser automatically refreshes every time period. The only prior solution to this problem, due to Damg{\aa}rd et al.~[DDP05], uses protocols that are a factor of $k$ slower for the user and verifier, where $k$ is the security parameter. Damg{\aa}rd et al. also only support one authentication per time period, while we support $n$. Because our construction is based on e-cash, we can use existing techniques to identify a cheating user, trace all of her e-tokens, and revoke her dispensers. We also offer a new anonymity service: glitch protection for basically honest users who (occasionally) reuse e-tokens. The verifier can always recognize a reused e-token; however, we preserve the anonymity of users who do not reuse e-tokens too often.
Steganography with Imperfect Samplers
Anna Lysyanskaya Maria Meyerovich
The goal of steganography is to pass secret messages by disguising them as innocent-looking covertexts. Real world stegosystems are often broken because they make invalid assumptions about the system's ability to sample covertexts. We examine whether it is possible to weaken this assumption. By modeling the covertext distribution as a stateful Markov process, we create a sliding scale between real world and provably secure stegosystems. We also show that insufficient knowledge of past states can have catastrophic results.