International Association for Cryptologic Research

International Association
for Cryptologic Research


Shinsaku Kiyomoto


Rocca: An Efficient AES-based Encryption Scheme for Beyond 5G
In this paper, we present an AES-based authenticated-encryption with associated-data scheme called Rocca, with the purpose to reach the requirements on the speed and security in 6G systems. To achieve ultra-fast software implementations, the basic design strategy is to take full advantage of the AES-NI and SIMD instructions as that of the AEGIS family and Tiaoxin-346. Although Jean and Nikolić have generalized the way to construct efficient round functions using only one round of AES (aesenc) and 128-bit XOR operation and have found several efficient candidates, there still seems to exist potential to further improve it regarding speed and state size. In order to minimize the critical path of one round, we remove the case of applying both aesenc and XOR in a cascade way for one round. By introducing a cost-free block permutation in the round function, we are able to search for candidates in a larger space without sacrificing the performance. Consequently, we obtain more efficient constructions with a smaller state size than candidates by Jean and Nikolić. Based on the newly-discovered round function, we carefully design the corresponding AEAD scheme with 256-bit security by taking several reported attacks on the AEGIS family and Tiaxion-346 into account. Our AEAD scheme can reach 138Gbps which is 4 times faster than the AEAD scheme of SNOW-V. Rocca is also much faster than other efficient schemes with 256-bit key length, e.g. AEGIS-256 and AES-256-GCM. As far as we know, Rocca is the first dedicated cryptographic algorithm targeting 6 systems, i.e., 256-bit key length and the speed of more than 100 Gbps.
Efficient Implementation of the Pairing on Mobilephones using BREW
Pairing based cryptosystems can accomplish novel security applications such as ID-based cryptosystems, which have not been constructed efficiently without the pairing. The processing speed of the pairing based cryptosystems is relatively slow compared with the other conventional public key cryptosystems. However, several efficient algorithms for computing the pairing have been proposed, namely Duursma-Lee algorithm and its variant $\eta_T$ pairing. In this paper, we present an efficient implementation of the pairing over some mobilephones. The processing speed of our implementation in ARM9 processors on BREW achieves under 100 milliseconds using the supersingular curve over $\mathbb F_{3^{97}}$. It has become efficient enough to implement security applications, such as ID-based cryptosystems and broadcast encryption, using the pairing on BREW mobilephones.