International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Andrew Miller

Publications

Year
Venue
Title
2023
RWC
SGX.Fail: How Secrets Get eXtracted
Intel's Software Guard Extensions (SGX) promises an isolated execution environment, protected from all software running on the machine. As such, numerous works have sought to leverage SGX to provide confidentiality and integrity guarantees for code running in adversarial environments. In the past few years however, SGX has come under heavy fire, threatened by numerous side channel attacks. With Intel repeatedly patching SGX to regain security, in this paper we set out to explore the effectiveness of SGX's update mechanisms to prevent attacks on real-world deployments. To that aim, we study two commercial SGX applications. First, we investigate the Secret network, an SGX-backed blockchain aiming to provide privacy preserving smart contracts. Next, we also consider PowerDVD, a UHD Blu-Ray Digital Rights Management (DRM) software licensed to play discs on general purpose computers. We show that in both cases vendors are unable to meet security goals originally envisioned for their products, presumably due to SGX's long mitigation timelines and a difficult manual update process. This in turn forces vendors into making difficult security/usability trade offs, resulting in severe security compromises.
2021
RWC
CanDID: Can-Do Decentralized Identity with Legacy Compatibility, Sybil-Resistance, and Accountability
We present CanDID, a platform for practical, user-friendly realization of {\em decentralized identity}, the idea of empowering end users with management of their own credentials. While decentralized identity promises to give users greater control over their private data, it burdens users with management of private keys, creating a significant risk of key loss. Existing and proposed approaches also presume the spontaneous availability of a credential-issuance ecosystem, creating a bootstrapping problem. They also omit essential functionality, like resistance to Sybil attacks and the ability to detect misbehaving or sanctioned users while preserving user privacy. CanDID addresses these challenges by issuing credentials in a user-friendly way that draws securely and privately on data from existing, unmodified web service providers. Such legacy compatibility similarly enables CanDID users to leverage their existing online accounts for recovery of lost keys. Using a decentralized committee of nodes, CanDID provides strong confidentiality for user's keys, real-world identities, and data, yet prevents users from spawning multiple identities and allows identification (and blacklisting) of sanctioned users. We present the CanDID architecture and its technical innovations and report on experiments demonstrating its practical performance.
2017
ASIACRYPT