International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption

Authors:
Robert Primas
Peter Pessl
Stefan Mangard
Download:
DOI: 10.1007/978-3-319-66787-4_25
Search ePrint
Search Google
Conference: CHES 2017
Abstract: Although lattice-based cryptography has proven to be a particularly efficient approach to post-quantum cryptography, its security against side-channel attacks is still a very open topic. There already exist some first works that use masking to achieve DPA security. However, for public-key primitives SPA attacks that use just a single trace are also highly relevant. For lattice-based cryptography this implementation-security aspect is still unexplored.In this work, we present the first single-trace attack on lattice-based encryption. As only a single side-channel observation is needed for full key recovery, it can also be used to attack masked implementations. We use leakage coming from the Number Theoretic Transform, which is at the heart of almost all efficient lattice-based implementations. This means that our attack can be adapted to a large range of other lattice-based constructions and their respective implementations.Our attack consists of 3 main steps. First, we perform a template matching on all modular operations in the decryption process. Second, we efficiently combine all this side-channel information using belief propagation. And third, we perform a lattice-decoding to recover the private key. We show that the attack allows full key recovery not only in a generic noisy Hamming-weight setting, but also based on real traces measured on an ARM Cortex-M4F microcontroller.
BibTeX
@inproceedings{ches-2017-28933,
  title={Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption},
  booktitle={Cryptographic Hardware and Embedded Systems – CHES 2017},
  series={Lecture Notes in Computer Science},
  publisher={Springer},
  volume={10529},
  pages={513-533},
  doi={10.1007/978-3-319-66787-4_25},
  author={Robert Primas and Peter Pessl and Stefan Mangard},
  year=2017
}