CryptoDB
Non-Interactive Zero-Knowledge Functional Proofs
Authors: |
|
---|---|
Download: | |
Presentation: | Slides |
Conference: | ASIACRYPT 2023 |
Abstract: | In this paper, we consider to generalize NIZK by empowering a prover to share a witness in a fine-grained manner with verifiers. Roughly, the prover is able to authorize a verifier to obtain extra information of witness, i.e., besides verifying the truth of the statement, the verifier can additionally obtain certain function of the witness from the accepting proof using a secret key provided by the prover. To fulfill these requirements, we introduce a new primitive called \emph{non-interactive zero-knowledge functional proofs (fNIZKs)}, and formalize its security notions. We provide a generic construction of fNIZK for any $\NP$ relation $\R$, which enables the prover to share any function of the witness with a verifier. For a widely-used relation about set membership proof (implying range proof), we construct a concrete and efficient fNIZK, through new building blocks (set membership encryption and dual inner-product encryption), which might be of independent interest. |
BibTeX
@inproceedings{asiacrypt-2023-33477, title={Non-Interactive Zero-Knowledge Functional Proofs}, publisher={Springer-Verlag}, author={Gongxian Zeng and Junzuo Lai and Zhengan Huang and Linru Zhang and Xiangning Wang and Kwok-Yan Lam and Huaxiong Wang and Jian Weng}, year=2023 }