CryptoDB
Divide-and-Conquer SAT for Exploring Optimal Differential and Linear Characteristics and Its Applications
Authors: | |
---|---|
Download: | |
Abstract: | Developing automatic search tools to derive optimal characteristics is crucial for both the design and cryptanalysis of symmetric-key primitives. However, evaluating primitives that employ large S-boxes and complex linear layers remains a computationally demanding task. In this paper, we introduce a novel solver-aided automatic search tool based on the divide-and-conquer strategy that leverages the advantages of both MILP and SAT methods. Our method divides a given SAT model into multiple smaller SAT models, allowing to pre-eliminate as much of the space of Boolean variable assignments that make a given SAT model always “UNSAT”. In addition, we propose a new method for large S-boxes that involves the decimal parts of values, enabling us to efficiently derive optimal linear characteristics for a large S-box-based primitive, all within a practical time for the first time. The new tool is able to obtain optimal differential and linear characteristics in the significant number of rounds of AES, Camellia without FL function, ARIA, LED, Midori-128, SKINNY- 128, and Rijndael-256-256. Our results improve the required number of rounds for differential and linear attacks, based on a single characteristic, for Camellia, LED, and Midori-128. Besides, our tool identifies the longest distinguisher for extensivelyanalyzed ciphers of Camellia/ARIA/Midori-128 and SKINNY-128 by optimal linear and differential ones, respectively. |
BibTeX
@article{tosc-2025-36293, title={Divide-and-Conquer SAT for Exploring Optimal Differential and Linear Characteristics and Its Applications}, journal={IACR Transactions on Symmetric Cryptology}, publisher={Ruhr-Universität Bochum}, volume={2025}, pages={516-576}, url={https://tosc.iacr.org/index.php/ToSC/article/view/12479}, doi={10.46586/tosc.v2025.i3.516-576}, author={Kazuma Taka and Kosei Sakamoto and Ryoma Ito and Rentaro Shiba and Shion Utsumi and Takanori Isobe}, year=2025 }