International Association for Cryptologic Research

International Association
for Cryptologic Research


Shizhu Tian


Mind the Propagation of States New Automatic Search Tool for Impossible Differentials and Impossible Polytopic Transitions 📺
Impossible differentials cryptanalysis and impossible polytopic cryptanalysis are the most effective approaches to estimate the security of block ciphers. However, the previous automatic search methods of their distinguishers, impossible differentials and impossible polytopic transitions, neither consider the impact of key schedule in the single-key setting and the differential property of large S-boxes, nor apply to the block ciphers with variable rotations. Thus, unlike previous methods which focus on the propagation of the difference or s-difference, we redefine the impossible differentials and impossible (s + 1)-polytopic transitions according to the propagation of state, which allow us to break through those limitations of the previous methods. Theoretically, we prove that traditional impossible differentials and impossible (s+1)-polytopic transitions are equivalent to part of our redefinitions, which have advantages from broader view. Technically, we renew the automatic search model and design an SAT-based tool to evaluate our redefined impossible differentials and impossible (s + 1)-polytopic transitions efficiently. As a result, for GIFT64, we get the 6-round impossible differentials which cannot be detected by all previous tools. For PRINTcipher, we propose the first modeling method for the key-dependent permutation and key-dependent S-box. For MISTY1, we derive 902 4-round impossible differentials by exploiting the differential property of S-boxes. For RC5, we present the first modeling method for the variable rotation and get 2.5-round impossible differentials for each version of it. More remarkable, our tool can be used to evaluate the security of given cipher against the impossible differentials, and we prove that there exists no 5-round 1 input active word and 1 output active word impossible differentials for AES-128 even consider the relations of 3-round keys. Besides, we also get the impossible (s + 1)-polytopic transitions for PRINTcipher, GIFT64, PRESENT, and RC5, all of which can cover more rounds than their corresponding impossible differentials as far as we know.
Anomalies and Vector Space Search: Tools for S-Box Analysis
S-boxes are functions with an input so small that the simplest way to specify them is their lookup table (LUT). How can we quantify the distance between the behavior of a given S-box and that of an S-box picked uniformly at random?To answer this question, we introduce various “anomalies”. These real numbers are such that a property with an anomaly equal to a should be found roughly once in a set of $$2^{a}$$ random S-boxes. First, we present statistical anomalies based on the distribution of the coefficients in the difference distribution table, linear approximation table, and for the first time, the boomerang connectivity table.We then count the number of S-boxes that have block-cipher like structures to estimate the anomaly associated to those. In order to recover these structures, we show that the most general tool for decomposing S-boxes is an algorithm efficiently listing all the vector spaces of a given dimension contained in a given set, and we present such an algorithm.Combining these approaches, we conclude that all permutations that are actually picked uniformly at random always have essentially the same cryptographic properties and the same lack of structure.
On the Generalization of Butterfly Structure
Butterfly structure was proposed in CRYPTO 2016 [PUB16], and it can generate permutations over