International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paul Rösler

Publications

Year
Venue
Title
2020
TOSC
Combiners for AEAD
Bertram Poettering Paul Rösler
The Authenticated Encryption with Associated Data (AEAD) primitive, which integrates confidentiality and integrity services under a single roof, found wide-spread adoption in industry and became indispensable in practical protocol design. Recognizing this, academic research put forward a large number of candidate constructions, many of which come with provable security guarantees. Nevertheless, the recent past has shaken up with the discovery of vulnerabilities, some of them fatal, in well-regarded schemes, stemming from weak underlying primitives, flawed security arguments, implementation-level vulnerabilities, and so on. Simply reacting to such findings by replacing broken candidates by better(?) ones is in many cases unduly, costly, and sometimes just impossible. On the other hand, as attack techniques and opportunities change over time, it seems venturous to propose any specific scheme if the intended lifetime of its application is, say, twenty years.In this work we study a workable approach towards increasing the resilience against unforeseen breaks of AEAD primitives. Precisely, we consider the ability to combine two AEAD schemes into one such that the resulting AEAD scheme is secure as long as at least one of its components is (or: as long as at most one component is broken). We propose a series of such combiners, some of which work with fully generic AEAD components while others assume specific internal structures of the latter (like an encrypt-then-MAC design). We complement our results by proving the optimality of our constructions by showing the impossibility of combiners that get along with less invocations of the component algorithms.
2020
PKC
Flexible Authenticated and Confidential Channel Establishment (fACCE): Analyzing the Noise Protocol Framework 📺
The Noise protocol framework is a suite of channel establishment protocols, of which each individual protocol ensures various security properties of the transmitted messages, but keeps specification, implementation, and configuration relatively simple. Implementations of the Noise protocols are themselves, due to the employed primitives, very performant. Thus, despite its relative youth, Noise is already used by large-scale deployed applications such as WhatsApp and Slack. Though the Noise specification describes and claims the security properties of the protocol patterns very precisely, there has been no computational proof yet. We close this gap. Noise uses only a limited number of cryptographic primitives which makes it an ideal candidate for reduction-based security proofs. Due to its patterns’ characteristics as channel establishment protocols, and the usage of established keys within the handshake, the authenticated and confidential channel establishment (ACCE) model (Jager et al. CRYPTO 2012) seems to perfectly fit for an analysis of Noise. However, the ACCE model strictly divides protocols into two non-overlapping phases: the pre-accept phase (i.e., the channel establishment) and post-accept phase (i.e., the channel). In contrast, Noise allows the transmission of encrypted messages as soon as any key is established (for instance, before authentication between parties has taken place), and then incrementally increases the channel’s security guarantees. By proposing a generalization of the original ACCE model, we capture security properties of such staged channel establishment protocols flexibly – comparably to the multi-stage key exchange model (Fischlin and Günther CCS 2014). We give security proofs for eight of the 15 basic Noise patterns in the full version (EPRINT 2019/436) and exemplify them by the proof of the  XK pattern in this article.
2020
TCC
On the Price of Concurrency in Group Ratcheting Protocols
Post-Compromise Security, or PCS, refers to the ability of a given protocol to recover—by means of normal protocol operations—from the exposure of local states of its (otherwise honest) participants. While PCS in the two-party setting has attracted a lot of attention recently, the problem of achieving PCS in the group setting—called group ratcheting here—is much less understood. On the one hand, one can achieve excellent security by simply executing, in parallel, a two-party ratcheting protocol (e.g., Signal) for each pair of members in a group. However, this incurs O(n) communication overhead for every message sent, where n is the group size. On the other hand, several related protocols were recently developed in the context of the IETF Messaging Layer Security (MLS) effort that improve the communication overhead per message to O(log n). However, this reduction of communication overhead involves a great restriction: group members are not allowed to send and recover from exposures concurrently such that reaching PCS is delayed up to n communication time slots (potentially even more). In this work we formally study the trade-off between PCS, concurrency, and communication overhead in the context of group ratcheting. Since our main result is a lower bound, we define the cleanest and most restrictive setting where the tension already occurs: static groups equipped with a synchronous (and authenticated) broadcast channel, where up to t arbitrary parties can concurrently send messages in any given round. Already in this setting, we show in a symbolic execution model that PCS requires Omega(t) communication overhead per message. Our symbolic model permits as building blocks black-box use of (even "dual") PRFs, (even key-updatable) PKE (which in our symbolic definition is at least as strong as HIBE), and broadcast encryption, covering all tools used in previous constructions, but prohibiting the use of exotic primitives. To complement our result, we also prove an almost matching upper bound of O(t(1+log(n/t))), which smoothly increases from O(log n) with no concurrency, to O(n) with unbounded concurrency, matching the previously known protocols.
2018
CRYPTO
Towards Bidirectional Ratcheted Key Exchange 📺
Bertram Poettering Paul Rösler
Ratcheted key exchange (RKE) is a cryptographic technique used in instant messaging systems like Signal and the WhatsApp messenger for attaining strong security in the face of state exposure attacks. RKE received academic attention in the recent works of Cohn-Gordon et al. (EuroS&P 2017) and Bellare et al. (CRYPTO 2017). While the former is analytical in the sense that it aims primarily at assessing the security that one particular protocol does achieve (which might be weaker than the notion that it should achieve), the authors of the latter develop and instantiate a notion of security from scratch, independently of existing implementations. Unfortunately, however, their model is quite restricted, e.g. for considering only unidirectional communication and the exposure of only one of the two parties.In this article we resolve the limitations of prior work by developing alternative security definitions, for unidirectional RKE as well as for RKE where both parties contribute. We follow a purist approach, aiming at finding strong yet convincing notions that cover a realistic communication model with fully concurrent operation of both participants. We further propose secure instantiations (as the protocols analyzed or proposed by Cohn-Gordon et al. and Bellare et al. turn out to be weak in our models). While our scheme for the unidirectional case builds on a generic KEM as the main building block (differently to prior work that requires explicitly Diffie–Hellman), our schemes for bidirectional RKE require a stronger, HIBE-like component.