International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Federico Giacon

Publications

Year
Venue
Title
2018
PKC
Hybrid Encryption in a Multi-user Setting, Revisited
Federico Giacon Eike Kiltz Bertram Poettering
This paper contributes to understanding the interplay of security notions for PKE, KEMs, and DEMs, in settings with multiple users, challenges, and instances. We start analytically by first studying (a) the tightness aspects of the standard hybrid KEM+DEM encryption paradigm, (b) the inherent weak security properties of all deterministic DEMs due to generic key-collision attacks in the multi-instance setting, and (c) the negative effect of deterministic DEMs on the security of hybrid encryption.We then switch to the constructive side by (d) introducing the concept of an augmented data encapsulation mechanism (ADEM) that promises robustness against multi-instance attacks, (e) proposing a variant of hybrid encryption that uses an ADEM instead of a DEM to alleviate the problems of the standard KEM+DEM composition, and (f) constructing practical ADEMs that are secure in the multi-instance setting.
2018
PKC
KEM Combiners
Key-encapsulation mechanisms (KEMs) are a common stepping stone for constructing public-key encryption. Secure KEMs can be built from diverse assumptions, including ones related to integer factorization, discrete logarithms, error correcting codes, or lattices. In light of the recent NIST call for post-quantum secure PKE, the zoo of KEMs that are believed to be secure continues to grow. Yet, on the question of which is the most secure KEM opinions are divided. While using the best candidate might actually not seem necessary to survive everyday life situations, placing a wrong bet can actually be devastating, should the employed KEM eventually turn out to be vulnerable.We introduce KEM combiners as a way to garner trust from different KEM constructions, rather than relying on a single one: We present efficient black-box constructions that, given any set of ‘ingredient’ KEMs, yield a new KEM that is (CCA) secure as long as at least one of the ingredient KEMs is.As building blocks our constructions use cryptographic hash functions and blockciphers. Some corresponding security proofs require idealized models for these primitives, others get along on standard assumptions.

Coauthors

Felix Heuer (1)
Eike Kiltz (1)
Bertram Poettering (2)