## CryptoDB

### Benedikt Auerbach

#### Publications

**Year**

**Venue**

**Title**

2022

EUROCRYPT

CoCoA: Concurrent Continuous Group Key Agreement
📺
Abstract

Messaging platforms like Signal are widely deployed and provide strong security in an asynchronous setting. It is a challenging problem to construct a protocol with similar security guarantees that can \emph{efficiently} scale to large groups. A major bottleneck are the frequent key rotations users need to perform to achieve post compromise forward security.
In current proposals -- most notably in TreeKEM (which is part of the IETF's Messaging Layer Security (MLS) protocol draft) -- for users in a group of size $n$ to rotate their keys, they must each craft a message of size $\log(n)$ to be broadcast to the group using an (untrusted) delivery server.
In larger groups, having users sequentially rotate their keys requires too much bandwidth (or takes too long), so variants allowing any $T \leq n$ users to simultaneously rotate their keys in just $2$ communication rounds have been suggested (e.g.\ ``Propose and Commit" by MLS). Unfortunately, $2$-round concurrent updates are either damaging or expensive (or both); i.e.\ they either result in future operations being more costly (e.g.\ via ``blanking'' or ``tainting'') or are costly themselves requiring $\Omega(T)$ communication for each user [Bienstock et al., TCC'20].
In this paper we propose CoCoA; a new scheme that allows for $T$ concurrent updates that are neither damaging nor costly. That is, they add no cost to future operations yet they only require $\Omega(\log^2(n))$ communication per user. To circumvent the [Bienstock et al.] lower bound, CoCoA increases the number of rounds needed to complete all updates from $2$ up to (at most) $\log(n)$; though typically fewer rounds are needed.
The key insight of our protocol is the following: in the (non-concurrent version of) TreeKEM, a delivery server which gets $T$ concurrent update requests will approve one and reject the remaining $T-1$. In contrast, our server attempts to apply all of them. If more than one user requests to rotate the same key during a round, the server arbitrarily picks a winner. Surprisingly, we prove that regardless of how the server chooses the winners, all previously compromised users will recover after at most $\log(n)$ such update rounds.
To keep the communication complexity low, CoCoA is a server-aided CGKA. That is, the delivery server no longer blindly forwards packets, but instead actively computes individualized packets tailored to each user. As the server is untrusted, this change requires us to develop new mechanisms ensuring robustness of the protocol.

2021

TCC

Grafting Key Trees: Efficient Key Management for Overlapping Groups
📺
Abstract

Key trees are often the best solution in terms of transmission cost and storage requirements for managing keys in a setting where a group needs to share a secret key, while being able to efficiently rotate the key material of users (in order to recover from a potential compromise, or to add or remove users). Applications include multicast encryption protocols like LKH (Logical Key Hierarchies) or group messaging like the current IETF proposal TreeKEM.
A key tree is a (typically balanced) binary tree, where each node is identified with a key: leaf nodes hold users’ secret keys while the root is the shared group key. For a group of size N, each user just holds log(N) keys (the keys on the path from its leaf to the root) and its entire key material can be rotated by broadcasting 2log(N) ciphertexts (encrypting each fresh key on the path under the keys of its parents). In this work we consider the natural setting where we have many groups with partially overlapping sets of users, and ask if we can find solutions where the cost of rotating a key is better than in the trivial
one where we have a separate key tree for each group.
We show that in an asymptotic setting (where the number m of groups is fixed while the number N of users grows) there exist more general key graphs whose cost converges to the cost of a single group, thus saving a factor linear in the number of groups over the trivial solution.
As our asymptotic “solution” converges very slowly and performs poorly on concrete examples, we propose an algorithm that uses a natural heuristic to compute a key graph for any given group structure. Our algorithm combines two greedy algorithms, and is thus very efficient: it first converts the group
structure into a “lattice graph”, which then is turned into a key graph by repeatedly applying the algorithm for constructing a Huffman code.
To better understand how far our proposal is from an optimal solution, we prove lower bounds on the update cost of continuous group-key agreement and multicast encryption in a symbolic model admitting (asymmetric) encryption, pseudorandom generators, and secret sharing as building blocks.

2020

EUROCRYPT

Everybody’s a Target: Scalability in Public-Key Encryption
📺
Abstract

For 1<=m<=n, we consider a natural m-out-of-n multi-instance scenario for a public-key encryption (PKE) scheme. An adversary, given n independent instances of PKE, wins if he breaks at least m out of the n instances. In this work, we are interested in the scaling factor of PKE schemes, SF, which measures how well the difficulty of breaking m out of the n instances scales in m. That is, a scaling factor SF=l indicates that breaking m out of n instances is at least l times more difficult than breaking one single instance. A PKE scheme with small scaling factor hence provides an ideal target for mass surveillance. In fact, the Logjam attack (CCS 2015) implicitly exploited, among other things, an almost constant scaling factor of ElGamal over finite fields (with shared group parameters).
For Hashed ElGamal over elliptic curves, we use the generic group model to describe how the scaling factor depends on the scheme's granularity. In low granularity, meaning each public key contains its independent group parameter, the scheme has optimal scaling factor SF=m; In medium and high granularity, meaning all public keys share the same group parameter, the scheme still has a reasonable scaling factor SF=sqrt(m). Our findings underline that instantiating ElGamal over elliptic curves should be preferred to finite fields in a multi-instance scenario.
As our main technical contribution, we derive new generic-group lower bounds of Omega(sqrt(mp)) on the complexity of solving both the m-out-of-n Gap Discrete Logarithm and the m-out-of-n Gap Computational Diffie-Hellman problem over groups of prime order p, extending a recent result by Yun (EUROCRYPT 2015). We establish the lower bound by studying the hardness of a related computational problem which we call the search-by-hypersurface problem.

2018

PKC

Public-Key Encryption Resistant to Parameter Subversion and Its Realization from Efficiently-Embeddable Groups
Abstract

We initiate the study of public-key encryption (PKE) schemes and key-encapsulation mechanisms (KEMs) that retain security even when public parameters (primes, curves) they use may be untrusted and subverted. We define a strong security goal that we call ciphertext pseudo-randomness under parameter subversion attack (CPR-PSA). We also define indistinguishability (of ciphertexts for PKE, and of encapsulated keys from random ones for KEMs) and public-key hiding (also called anonymity) under parameter subversion attack, and show they are implied by CPR-PSA, for both PKE and KEMs. We show that hybrid encryption continues to work in the parameter subversion setting to reduce the design of CPR-PSA PKE to CPR-PSA KEMs and an appropriate form of symmetric encryption. To obtain efficient, elliptic-curve-based KEMs achieving CPR-PSA, we introduce efficiently-embeddable group families and give several constructions from elliptic-curves.

2018

PKC

Hashing Solutions Instead of Generating Problems: On the Interactive Certification of RSA Moduli
Abstract

Certain RSA-based protocols, for instance in the domain of group signatures, require a prover to convince a verifier that a set of RSA parameters is well-structured (e.g., that the modulus is the product of two distinct primes and that the exponent is co-prime to the group order). Various corresponding proof systems have been proposed in the past, with different levels of generality, efficiency, and interactivity.This paper proposes two new proof systems for a wide set of properties that RSA and related moduli might have. The protocols are particularly efficient: The necessary computations are simple, the communication is restricted to only one round, and the exchanged messages are short. While the first protocol is based on prior work (improving on it by reducing the number of message passes from four to two), the second protocol is novel. Both protocols require a random oracle.

#### Coauthors

- Joël Alwen (2)
- Mirza Ahad Baig (1)
- Mihir Bellare (1)
- David Cash (1)
- Manuel Fersch (1)
- Federico Giacon (1)
- Eike Kiltz (3)
- Karen Klein (2)
- Miguel Cueto Noval (2)
- Guillermo Pascual-Perez (2)
- Krzysztof Pietrzak (2)
- Bertram Poettering (1)
- Michael Walter (2)