International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Yi Tu

Publications

Year
Venue
Title
2022
CRYPTO
Superposition Meet-in-the-Middle Attacks: Updates on Fundamental Security of AES-like Ciphers 📺
The Meet-in-the-Middle approach is one of the most powerful cryptanalysis techniques, demonstrated by its applications in preimage attacks on the full MD4, MD5, Tiger, HAVAL, and Haraka-512 v2 hash functions, and key recovery of the full block cipher KTANTAN. The success relies on the separation of a primitive into two independent chunks, where each active cell of the state is used to represent only one chunk or is otherwise considered unusable once mixed. We observe that some of such cells are linearly mixed and can be as useful as the independent ones. This leads to the introduction of superposition states and a whole suite of accompanied techniques, which we incorporate into the MILP-based search framework proposed by Bao et al. at EUROCRYPT 2021 and Dong et al. at CRYPTO 2021, and find applications on a wide range of AES-like hash functions and block ciphers.
2020
TOSC
New Techniques for Searching Differential Trails in Keccak 📺
Keccak-f is the permutation used in the NIST SHA-3 hash function standard. Inspired by the previous exhaustive differential trail search methods by Mella et al. at ToSC 2017, we introduce in this paper new algorithms to cover 3-round trail cores with propagation weight at least 53, up from the previous best weight 45. To achieve the goal, the concept of ideal improvement assumption is proposed to construct theoretical representative of subspaces so as to efficiently cover the search space of 3-round trail cores with at least one out-Kernel α state. Of particular note is that the exhaustiveness in 3-round trail core search of at least one out-Kernel α is only experimentally verified. With the knowledge of all 3-round trail cores of weight up to 53, lower bounds on 4/5/6-round trails are tightened to 56/58/108, from the previous 48/50/92, respectively.

Coauthors

Zhenzhen Bao (1)
Jian Guo (1)
Guozhen Liu (1)
Weidong Qiu (1)
Danping Shi (1)