International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Zhenzhen Bao

Affiliation: NTU, Singapore

Publications

Year
Venue
Title
2019
TOSC
PEIGEN – a Platform for Evaluation, Implementation, and Generation of S-boxes
Zhenzhen Bao Jian Guo San Ling Yu Sasaki
In this paper, a platform named PEIGEN is presented to evaluate security, find efficient software/hardware implementations, and generate cryptographic S-boxes. Continuously developed for decades, S-boxes are constantly evolving in terms of the design criteria for both security requirements and software/hardware performances. PEIGEN is aimed to be a platform covering a comprehensive check-list of design criteria of S-boxes appearing in the literature. To do so, the security requirements are first intensively surveyed, existing tools of S-boxes are then comprehensively compared, and finally our platform PEIGEN is presented. The survey part is aimed to be a systematic reference for the theoretical study of S-boxes. The platform is aimed to be an assistant tool for the experimental study and practical use of S-boxes. PEIGEN not only integrates most of the features in existing tools, but also equips with functionalities to evaluate new security-related properties, improves the efficiency of the search algorithms for optimized implementations in several aspects. With the help of this powerful platform, many interesting observations are made in-between the security notations, as well as on the S-boxes used in the existing symmetrickey cryptographic primitives. PEIGEN will become an open platform and welcomes contributions from all parties to help the community to facilitate the research and use of S-boxes.
2019
TOSC
ZOCB and ZOTR: Tweakable Blockcipher Modes for Authenticated Encryption with Full Absorption
We define ZOCB and ZOTR for nonce-based authenticated encryption with associated data, and analyze their provable security. These schemes use a tweakable blockcipher (TBC) as the underlying primitive, and fully utilize its input to process a plaintext and associated data (AD). This property is commonly referred to as full absorption, and this has been explored for schemes based on a permutation or a pseudorandom function (PRF). Our schemes improve the efficiency of TBC-based counterparts of OCB and OTR called OCB3 (Krovetz and Rogaway, FSE 2011) and OTR (Minematsu, EUROCRYPT 2014). Specifically, ΘCB3 and OTR have an independent part to process AD, and our schemes integrate this process into the encryption part of a plaintext by using the tweak input of the TBC. Up to a certain length of AD, ZOCB and ZOTR completely eliminate the independent process for it. Even for longer AD, our schemes process it efficiently by fully using the tweak input of the TBC. For this purpose, based on previous tweak extension schemes for TBCs, we introduce a scheme called XTX*. To our knowledge, ZOCB and ZOTR are the first efficiency improvement of ΘCB3 and OTR in terms of the number of TBC calls. Compared to Sponge-based and PRF-based schemes, ZOCB and ZOTR allow fully parallel computation of the underlying primitive, and have a unique design feature that an authentication tag is independent of a part of AD. We present experimental results illustrating the practical efficiency gain and clarifying the efficiency cost for it with a concrete instantiation. The results show that for long input data, our schemes have gains, while we have efficiency loss for short input data.
2018
TOSC
Functional Graphs and Their Applications in Generic Attacks on Iterated Hash Constructions
Zhenzhen Bao Jian Guo Lei Wang
We provide a survey about generic attacks on cryptographic hash constructions including hash-based message authentication codes and hash combiners. We look into attacks involving iteratively evaluating identical mappings many times. The functional graph of a random mapping also involves iteratively evaluating the mapping. These attacks essentially exploit properties of the functional graph. We map the utilization space of those properties from numerous proposed known attacks, draw a comparison among classes of attacks about their advantages and limitations. We provide a systematic exposition of concepts of cycles, deep-iterate images, collisions and their roles in cryptanalysis of iterated hash constructions. We identify the inherent relationship between these concepts, such that case-by-case theories about them can be unified into one knowledge system, that is, theories on the functional graph of random mappings. We show that the properties of the cycle search algorithm, the chain evaluation algorithm and the collision search algorithm can be described based on statistic results on the functional graph. Thereby, we can provide different viewpoints to support previous beliefs on individual knowledge. In that, we invite more sophisticated analysis of the functional graph of random mappings and more future exploitations of its properties in cryptanalysis.
2017
CRYPTO
2016
ASIACRYPT
2015
EPRINT
2015
FSE
2014
EPRINT

Program Committees

FSE 2020