International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Shujiao Cao

Publications and invited talks

Year
Venue
Title
2025
ASIACRYPT
On Quantum Query Complexities of Collision-Finding in Non-Uniform Random Functions
Tianci Peng Shujiao Cao Rui Xue
Collision resistance and collision finding are now extensively exploited in Cryptography, especially in the case of quantum computing. For any function $f:[M]\to[N]$ with $f(x)$ uniformly distributed over $[N]$, Zhandry has shown that the number $\Theta(N^{1/3})$ of queries is both necessary and sufficient for finding a collision in $f$ with constant probability. However, there is still a gap between the upper and the lower bounds of query complexity in general non-uniform distributions. In this paper, we investigate the quantum query complexity of the collision-finding problem with respect to general non-uniform distributions. Inspired by previous work, we pose the concept of collision domain and a new parameter $\gamma$ that heavily depends on the underlying non-uniform distribution. We then present a quantum algorithm that uses $O(\gamma^{1/6})$ quantum queries to find a collision for any non-uniform random function. By transforming a problem in a non-uniform setting into a problem in a uniform setting, we are also able to show that $\Omega(\gamma^{1/6}\log^{-1/2}\gamma)$ quantum queries are necessary for collision-finding in any non-uniform random function. The upper bound and the lower bound in this work indicate that the proposed algorithm is nearly optimal with query complexity in the general non-uniform case.
2022
CRYPTO
The Gap Is Sensitive to Size of Preimages: Collapsing Property Doesn't Go Beyond Quantum Collision-Resistance for Preimages Bounded Hash Functions.
Shujiao Cao Rui Xue
As an enhancement of quantum collision-resistance, the collapsing property of hash functions proposed by Unruh ({EUROCRYPT} 2016) emphasizes the hardness for distinguishing a superposition state of a hash value from a collapsed one. The collapsing property trivially implies the quantum collision-resistance. However, it remains to be unknown whether there is a reduction from the collapsing hash functions to the quantum collision-resistant hash functions. In this paper, we further study the relations between these two properties and derive two intriguing results as follows: Firstly, when the size of preimages of each hash value is bounded by some polynomial, we demonstrate that the collapsing property and the collision-resistance must hold simultaneously. This result is proved via a semi-black-box manner by taking advantage of the invertibility of a unitary quantum circuit. Next, we further consider the relations between these two properties in the exponential-sized preimages case. By giving a construction of polynomial bounded hash functions, which preserves the quantum collision-resistance, we show the existence of collapsing hash functions is implied by the quantum collision-resistant hash functions when the size of preimages is not too large to the expected value. Our results indicate that the gap between these two properties is sensitive to the size of preimages. As a corollary, our results also reveal the non-existence of polynomial bounded equivocal collision-resistant hash functions.

Coauthors

Shujiao Cao (2)
Tianci Peng (1)
Rui Xue (2)