CryptoDB
Tianshu Shan
Publications
Year
Venue
Title
2023
PKC
QCCA-Secure Generic Transformations in the Quantum Random Oracle Model
Abstract
The post-quantum security of cryptographic schemes assumes that the quantum adversary only receives the classical result of computations with the secret key. Further, it is unknown whether the post-quantum secure schemes still remain secure if the adversary can obtain a superposition state of the results.
In this paper, we formalize one class of public-key encryption schemes named oracle-masked schemes. Then we define the plaintext extraction procedure for those schemes and this procedure simulates the quantum-accessible decryption oracle with a certain loss.
The construction of the plaintext extraction procedure does not need to take the secret key as input. Based on this property, we prove the IND-qCCA security of the Fujisaki-Okamoto (FO) transformation in the quantum random oracle model (QROM) and our security proof is tighter than the proof given by Zhandry (Crypto 2019). We also give the first IND-qCCA security proof of the REACT transformation in the QROM. Furthermore, our formalization can be applied to prove the IND-qCCA security of key encapsulation mechanisms with explicit rejection. As an example, we present the IND-qCCA security proof of TCH transformation, proposed by Huguenin-Dumittan and Vaudenay (Eurocrypt 2022), in the QROM.
Coauthors
- Jiangxia Ge (1)
- Rui Xue (1)