International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Geng Wang

Publications

Year
Venue
Title
2024
PKC
A Refined Hardness Estimation of LWE in Two-step Mode
Recently, researchers have proposed many LWE estimators, such as lattice-estimator (Albrecht et al, Asiacrypt 2017) and leaky-LWE-Estimator (Dachman-Soled et al, Crypto 2020), while the latter has already been used in estimating the security level of Kyber and Dilithium using only BKZ. However, we prove in this paper that solving LWE by combining a lattice reduction step (by LLL or BKZ) and a target vector searching step (by enumeration or sieving), which we call a Two-step mode, is more efficient than using only BKZ. Moreover, we give a refined LWE estimator in Two-step mode by analyzing the relationship between the probability distribution of the target vector and the solving success rate in a Two-step mode LWE solving algorithm. While the latest Two-step estimator for LWE, which is the “primal-bdd” mode in lattice-estimator1, does not take into account some up-to-date results and lacks a thorough theoretical analysis. Under the same gate-count model, our estimation for NIST PQC standards drops by 2.1∼3.4 bits (2.2∼4.6 bits while considering more flexible blocksize and jump strategy) compared with leaky-LWE-Estimator. Furthermore, we also give a conservative estimation for LWE from the Two-step solving algorithm. Compared with the Core-SVP model, which is used in previous conservative estimations, our estimation relies on weaker assumptions and outputs higher evaluation results than the Core-SVP model. For NIST PQC standards, our conservative estimation is 4.17∼8.11 bits higher than the Core-SVP estimation. Hence our estimator can give a closer estimation for both upper bound and lower bound of LWE hardness.
2023
PKC
Functional Encryption against Probabilistic Queries: Definition, Construction and Applications
Functional encryption (FE for short) can be used to calculate a function output of a message, without revealing other information about the message. There are mainly two types of security definitions for FE, exactly simulation-based security (SIM-security) and indistinguishability-based security (IND-security). The two types of security definitions both suffer from their own drawbacks: FE with SIM-security supporting all circuits cannot be constructed for unbounded number of ciphertext and/or key queries, while IND-security is sometimes not enough: there are examples where an FE scheme is IND-secure but not intuitively secure. In this paper, we present a new security definition which can avoid the drawbacks of both SIM-security and IND-security, called indistinguishability-based security against probabilistic queries (pIND-security for short), and we give an FE construction for all circuits which is secure for unbounded key/ciphertext queries under this new security definition. We prove that this new security definition is strictly between SIM-security and IND-security, and provide new applications for FE which were not known to be constructed from IND-secure or SIM-secure FE.