International Association for Cryptologic Research

International Association
for Cryptologic Research


Giacomo Pope


A Direct Key Recovery Attack on SIDH
We present an attack on SIDH utilising isogenies between polarized products of two supersingular elliptic curves. In the case of arbitrary starting curve, our attack (discovered independently from [8]) has subexponential complexity, thus significantly reducing the security of SIDH and SIKE. When the endomorphism ring of the starting curve is known, our attack (here derived from [8]) has polynomial-time complexity assuming the generalised Riemann hypothesis. Our attack applies to any isogeny-based cryptosystem that publishes the images of points under the secret isogeny, for example Séta [13] and B-SIDH [11]. It does not apply to CSIDH [9], CSI-FiSh [3], or SQISign [14].
FESTA: Fast Encryption from Supersingular Torsion Attacks
We introduce FESTA, an efficient isogeny-based public-key encryption (PKE) protocol based on a constructive application of the SIDH attacks. At its core, FESTA is based on a novel trapdoor function, which uses an improved version of the techniques proposed in the SIDH attacks to develop a trapdoor mechanism. Using standard transformations, we construct an efficient PKE that is IND-CCA secure in the QROM. Additionally, using a different transformation, we obtain the first isogeny-based PKE that is IND-CCA secure in the standard model. Lastly, we propose a method to efficiently find parameters for FESTA, and we develop a proof-of-concept implementation of the protocol. We expect FESTA to offer practical performance that is competitive with existing isogeny-based constructions.