International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Luciano Maino

Publications

Year
Venue
Title
2025
PKC
PRISM: Simple And Compact Identification and Signatures From Large Prime Degree Isogenies
The problem of computing an isogeny of large prime degree from a supersingular elliptic curve of unknown endomorphism ring is assumed to be hard both for classical as well as quantum computers. In this work, we first build a two-round identification protocol whose security reduces to this problem. The challenge consists of a random large prime $q$ and the prover simply replies with an efficient representation of an isogeny of degree $q$ from its public key. Using the hash-and-sign paradigm, we then derive a signature scheme with a very simple and flexible signing procedure and prove its security in the standard model. Our optimized C implementation of the signature scheme shows that signing is roughly $1.8\times$ faster than all SQIsign variants, whereas verification is $1.4\times$ times slower. The sizes of the public key and signature are comparable to existing schemes.
2025
EUROCRYPT
POKÉ: A Compact and Efficient PKE from Higher-dimensional Isogenies
Andrea Basso Luciano Maino
We introduce a new PKE protocol, POKE, based on isogenies of unknown degree. The protocol relies on two new techniques: the first constructs an SIDH square while also working with higher-dimensional representations, while the second allows us to obtain a shared secret even when all curves in the commutative diagram are known. The resulting protocol is compact, while extremely efficient. We provide a proof-of-concept implementation in SageMath of POKE that shows encryption and decryption taking about a hundred milliseconds at security level I: POKE is thus the most efficient encryption protocol from isogenies, and it outperforms existing protocols by more than an order of magnitude.
2025
PKC
Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3
We provide explicit descriptions for radical 2-isogenies in dimensions one, two and three using theta coordinates. These formulas allow us to efficiently navigate in the corresponding isogeny graphs. As an application of this, we implement different versions of the CGL hash function. Notably, the three-dimensional version is fastest, which demonstrates yet another potential of using higher dimensional isogeny graphs in cryptography.
2024
ASIACRYPT
SQIsign2D-West: The Fast, the Small, and the Safer
We introduce SQIsign2D-West, a variant of SQIsign using two-dimensional isogeny representations. SQIsignHD was the first variant of SQIsign to use higher dimensional isogeny representations. Its eight-dimensional variant is geared towards provable security but is deemed unpractical. Its four-dimensional variant is geared towards efficiency and has significantly faster signing times than SQIsign, but considerably slower verification owing to the complexity of the four-dimensional representation. Its authors commented on the apparent difficulty of getting any improvement over SQIsign by using two-dimensional representations. In this work, we introduce new algorithmic tools that make two-dimensional representations a viable alternative. These lead to a signature scheme with sizes comparable to SQIsignHD, slightly slower signing than SQIsignHD but still much faster than SQIsign, and the fastest verification of any known variant of SQIsign. We achieve this without compromising on the security proof: the assumptions behind SQIsign2D-West are similar to those of the eight-dimensional variant of SQIsignHD. Additionally, like SQIsignHD, SQIsign2D-West favourably scales to high levels of security. Concretely, for NIST level I we achieve signing times of 80ms and verifying times of 4.5ms, using optimised arithmetic based on intrinsics available to the Ice Lake architecture. For NIST level V, we achieve 470ms for signing and 31ms for verifying.
2024
ASIACRYPT
An Algorithmic Approach to $(2,2)$-isogenies in the Theta Model and Applications to Isogeny-based Cryptography
In this paper, we describe an algorithm to compute chains of $(2,2)$-isogenies between products of elliptic curves in the theta model. The description of the algorithm is split into various subroutines to allow for a precise field operation counting. We present a constant time implementation of our algorithm in Rust and an alternative implementation in SageMath. Our work in SageMath runs ten times faster than a comparable implementation of an isogeny chain using the Richelot correspondence. The Rust implementation runs up to forty times faster than the equivalent isogeny in SageMath and has been designed to be portable for future research in higher-dimensional isogeny-based cryptography.
2023
EUROCRYPT
A Direct Key Recovery Attack on SIDH
We present an attack on SIDH utilising isogenies between polarized products of two supersingular elliptic curves. In the case of arbitrary starting curve, our attack (discovered independently from [8]) has subexponential complexity, thus significantly reducing the security of SIDH and SIKE. When the endomorphism ring of the starting curve is known, our attack (here derived from [8]) has polynomial-time complexity assuming the generalised Riemann hypothesis. Our attack applies to any isogeny-based cryptosystem that publishes the images of points under the secret isogeny, for example Séta [13] and B-SIDH [11]. It does not apply to CSIDH [9], CSI-FiSh [3], or SQISign [14].
2023
ASIACRYPT
FESTA: Fast Encryption from Supersingular Torsion Attacks
Andrea Basso Luciano Maino Giacomo Pope
We introduce FESTA, an efficient isogeny-based public-key encryption (PKE) protocol based on a constructive application of the SIDH attacks. At its core, FESTA is based on a novel trapdoor function, which uses an improved version of the techniques proposed in the SIDH attacks to develop a trapdoor mechanism. Using standard transformations, we construct an efficient PKE that is IND-CCA secure in the QROM. Additionally, using a different transformation, we obtain the first isogeny-based PKE that is IND-CCA secure in the standard model. Lastly, we propose a method to efficiently find parameters for FESTA, and we develop a proof-of-concept implementation of the protocol. We expect FESTA to offer practical performance that is competitive with existing isogeny-based constructions.