International Association for Cryptologic Research

International Association
for Cryptologic Research


Hongrui Cui

ORCID: 0000-0002-6203-413X


ReSolveD: Shorter Signatures from Regular Syndrome Decoding and VOLE-in-the-Head
We present ReSolveD, a new candidate post-quantum signature scheme under the regular syndrome decoding (RSD) assumption for random linear codes, which is a well-established variant of the well-known syndrome decoding (SD) assumption. Our signature scheme is obtained by designing a new zero-knowledge proof for proving knowledge of a solution to the RSD problem in the recent VOLE-in-the-head framework using a sketching scheme to verify that a vector has weight exactly one. We achieve a signature size of 3.99 KB with a signing time of 27.3 ms and a verification time of 23.1 ms on a single core of a standard desktop for a 128-bit security level. Compared to the state-of-the-art code-based signature schemes, our signature scheme achieves 1.5X ~ 2X improvement in terms of the common “signature size + public-key size” metric, while keeping the computational efficiency competitive.
Actively Secure Half-Gates with Minimum Overhead under Duplex Networks
Hongrui Cui Xiao Wang Kang Yang Yu Yu
Actively secure two-party computation (2PC) is one of the canonical building blocks in modern cryptography. One main goal for designing actively secure 2PC protocols is to reduce the communication overhead, compared to semi-honest 2PC protocols. In this paper, we propose a new actively secure constant-round 2PC protocol with one-way communication of $2\kappa+5$ bits per AND gate (for $\kappa$-bit computational security and any statistical security), essentially matching the one-way communication of semi-honest half-gates protocol. This is achieved by two new techniques: - The recent compression technique by Dittmer et al. (Crypto 2022) shows that a relaxed preprocessing is sufficient for authenticated garbling that does not reveal masked wire values to the garbler. We introduce a new form of authenticated bits and propose a new technique of generating authenticated AND triples to reduce the one-way communication of preprocessing from $5\rho+1$ bits to $2$ bits per AND gate for $\rho$-bit statistical security. - Unfortunately, the above compressing technique is only compatible with a less compact authenticated garbled circuit of size $2\kappa+3\rho$ bits per AND gate. We designed a new authenticated garbling that does not use information theoretic MACs but rather dual execution without leakage to authenticate wire values in the circuit. This allows us to use a more compact half-gates based authenticated garbled circuit of size $2\kappa+1$ bits per AND gate, and meanwhile keep compatible with the compression technique. Our new technique can achieve one-way communication of $2\kappa+5$ bits per AND gate. Our technique of yielding authenticated AND triples can also be used to optimize the two-way communication (i.e., the total communication) by combining it with the authenticated garbled circuits by Dittmer et al., which results in an actively secure 2PC protocol with two-way communication of $2\kappa+3\rho+4$ bits per AND gate.
Revisiting the Constant-sum Winternitz One-time Signature with Applications to SPHINCS+ and XMSS
Kaiyi Zhang Hongrui Cui Yu Yu
Hash-based signatures offer a conservative alternative to post-quantum signatures with arguably better-understood security than other post-quantum candidates. As a core building block of hash-based signatures, the efficiency of one-time signature (OTS) largely dominates that of hash-based signatures. The WOTS$^{+}$ signature scheme (Africacrypt 2013) is the current state-of-the-art OTS adopted by the signature schemes standardized by NIST---XMSS, LMS, and SPHINCS$^+$. A natural question is whether there is (and how much) room left for improving one-time signatures (and thus standard hash-based signatures). In this paper, we show that WOTS$^{+}$ one-time signature, when adopting the constant-sum encoding scheme (Bos and Chaum, Crypto 1992), is size-optimal not only under Winternitz's OTS framework, but also among all tree-based OTS designs. Moreover, we point out a flaw in the DAG-based OTS design previously shown to be size-optimal at Asiacrypt 1996, which makes the constant-sum WOTS$^{+}$ the most size-efficient OTS to the best of our knowledge. Finally, we evaluate the performance of constant-sum WOTS$^{+}$ integrated into the SPHINCS$^+$ (CCS 2019) and XMSS (PQC 2011) signature schemes which exhibit certain degrees of improvement in both signing time and signature size.
Algebraic Attacks on Round-Reduced Rain and Full AIM-III
Picnic is a NIST PQC Round 3 Alternate signature candidate that builds upon symmetric primitives following the MPC-in-the-head paradigm. Recently, researchers have been exploring more secure/efficient signature schemes from conservative one-way functions based on AES, or new low complexity one-way functions like Rain (CCS 2022) and AIM (CCS 2023). The signature schemes based on Rain and AIM are currently the most efficient among MPC-in-the-head-based schemes, making them promising post-quantum digital signature candidates. However, the exact hardness of these new one-way functions deserves further study and scrutiny. This work presents algebraic attacks on Rain and AIM for certain instances, where one-round Rain can be compromised in $2^{n/2}$ for security parameter $n\in \{128,192,256\}$, and two-round Rain can be broken in $2^{120.3}$, $2^{180.4}$, and $2^{243.1}$ encryptions, respectively. Additionally, we demonstrate an attack on AIM-III (which aims at 192-bit security) with a complexity of $2^{186.5}$ encryptions. These attacks exploit the algebraic structure of the power function over fields with characteristic 2, which provides potential insights into the algebraic structures of some symmetric primitives and thus might be of independent interest.


Chun Guo (1)
Hanlin Liu (1)
Qingju Wang (1)
Xiao Wang (1)
Di Yan (1)
Kang Yang (2)
Yu Yu (4)
Kaiyi Zhang (1)
Kai Zhang (2)