International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Kang Yang

Publications

Year
Venue
Title
2022
ASIACRYPT
Non-Interactive Zero-Knowledge Proofs to Multiple Verifiers 📺
Kang Yang Xiao Wang
In this paper, we study zero-knowledge (ZK) proofs for circuit satisfiability that can prove to $n$ verifiers at a time efficiently. The proofs are secure against the collusion of a prover and a subset of $t$ verifiers. We refer to such ZK proofs as multi-verifier zero-knowledge (MVZK) proofs and focus on the case that a majority of verifiers are honest (i.e., $t<n/2$). We construct efficient MVZK protocols in the random oracle model where the prover sends one message to each verifier, while the verifiers only exchange one round of messages. When the threshold of corrupted verifiers $t<n/2$, the prover sends $1/2+o(1)$ field elements per multiplication gate to every verifier; when $t<n(1/2-\epsilon)$ for some constant $0<\epsilon<1/2$, we can further reduce the communication to $O(1/n)$ field elements per multiplication gate per verifier. Our MVZK protocols demonstrate particularly high scalability: the proofs are streamable and only require a memory proportional to what is needed to evaluate the circuit in the clear.
2020
PKC
Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices: KEMs and Signatures of Smaller Sizes 📺
Currently, lattice-based cryptosystems are less efficient than their number-theoretic counterparts (based on RSA, discrete logarithm, etc.) in terms of key and ciphertext (signature) sizes. For adequate security the former typically needs thousands of bytes while in contrast the latter only requires at most hundreds of bytes. This significant difference has become one of the main concerns in replacing currently deployed public-key cryptosystems with lattice-based ones. Observing the inherent asymmetries in existing lattice-based cryptosystems, we propose asymmetric variants of the (module-)LWE and (module-)SIS assumptions, which yield further size-optimized KEM and signature schemes than those from standard counterparts. Following the framework of Lindner and Peikert (CT-RSA 2011) and the Crystals-Kyber proposal (EuroS&P 2018), we propose an IND-CCA secure KEM scheme from the hardness of the asymmetric module-LWE (AMLWE), whose asymmetry is fully exploited to obtain shorter public keys and ciphertexts. To target at a 128-bit quantum security, the public key (resp., ciphertext) of our KEM only has 896 bytes (resp., 992 bytes). Our signature scheme bears most resemblance to and improves upon the Crystals-Dilithium scheme (ToCHES 2018). By making full use of the underlying asymmetric module-LWE and module-SIS assumptions and carefully selecting the parameters, we construct an SUF-CMA secure signature scheme with shorter public keys and signatures. For a 128-bit quantum security, the public key (resp., signature) of our signature scheme only has 1312 bytes (resp., 2445 bytes). We adapt the best known attacks and their variants to our AMLWE and AMSIS problems and conduct a comprehensive and thorough analysis of several parameter choices (aiming at different security strengths) and their impacts on the sizes, security and error probability of lattice-based cryptosystems. Our analysis demonstrates that AMLWE and AMSIS problems admit more flexible and size-efficient choices of parameters than the respective standard versions.

Coauthors

Shuqin Fan (1)
Xiao Wang (1)
Yu Yu (1)
Jiang Zhang (1)
Zhenfeng Zhang (1)