International Association for Cryptologic Research

International Association
for Cryptologic Research


Antonio Flórez-Gutiérrez


Improving Key Recovery Linear Attacks with Walsh Spectrum Puncturing
Antonio Flórez-Gutiérrez Yosuke Todo
In some linear key recovery attacks, the function which determines the value of the linear approximation is replaced by a similar map in order to improve the time or memory complexity at the cost of a data complexity increase. We propose a general framework for key recovery map substitution, and introduce Walsh spectrum puncturing, which consists of removing carefully-chosen coefficients from the Walsh spectrum of this map. The capabilities of this technique are illustrated by describing improved attacks on reduced-round Serpent (including the first 12-round attack on the 192-bit key variant), GIFT-128 and NOEKEON, as well as the full DES.
Key Committing Security of AEZ and More
For an Authenticated Encryption with Associated Data (AEAD) scheme, the key committing security refers to the security notion of whether the adversary can produce a pair of distinct input tuples, including the key, that result in the same output. While the key committing security of various nonce-based AEAD schemes is known, the security analysis of Robust AE (RAE) is largely unexplored. In particular, we are interested in the key committing security of AEAD schemes built on the Encode-then-Encipher (EtE) approach from a wide block cipher. We first consider AEZ v5, the classical and the first dedicated RAE that employs the EtE approach. We focus our analysis on the core part of AEZ to show our best attacks depending on the length of the ciphertext expansion. In the general case where the Tweakable Block Cipher (TBC) is assumed to be ideal, we show a birthday attack and a matching provable security result. AEZ adopts a simpler key schedule and the prove-then-prune approach in the full specification, and we show a practical attack against it by exploiting the simplicity of the key schedule. The complexity is 227, and we experimentally verify the correctness with a concrete example. We also cover two AEAD schemes based on EtE. One is built on Adiantum, and the other one is built on HCTR2, which are two wide block ciphers that are used in real applications. We present key committing attacks against these schemes when used in EtE and matching proofs for particular cases.