International Association for Cryptologic Research

International Association
for Cryptologic Research


Marcel Tiepelt


Post-Quantum Ready Key Agreement for Aviation
<p> Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion.</p><p>We initiate the study of the LDACS key agreement protocol (Edition 01.01.00 from 25.04.2023), which is soon-to-be-standardized by the International Civil Aviation Organization. The protocol's cipher suite features Diffie-Hellman as well as a KEM-based key agreement protocol to provide post-quantum security. While the former results in an instantiation of an ISO key agreement inheriting all security properties, the security achieved by the latter is ambiguous. We formalize the computational security using the systematic notions of de Saint Guilhem, Fischlin and Warinshi (CSF '20), and prove the exact security that the KEM-based variant achieves in this model; primarily entity authentication, key secrecy and key authentication. To further strengthen our “pen-and-paper” findings, we model the protocol and its security guarantees using Tamarin, providing an automated proof of the security against a Dolev-Yao attacker. </p>
Quantum Lattice Enumeration in Limited Depth
In 2018, Aono et al. (ASIACRYPT 2018) proposed to use quantum backtracking algorithms (Montanaro, TOC 2018; Ambainis and Kokainis, STOC 2017) to speedup lattice point enumeration. Quantum lattice sieving algorithms had already been proposed (Laarhoven et al., PQCRYPTO 2013), being shown to provide an asymptotic speedup over classical counterparts, but also to lose competitiveness at dimensions relevant to cryptography if practical considerations on quantum computer architecture were taken into account (Albrecht et al., ASIACRYPT 2020). Aono et al.'s work argued that quantum walk speedups can be applied to lattice enumeration, achieving at least a quadratic asymptotic speedup à la Grover search while not requiring exponential amounts of quantum accessible classical memory, as it is the case for sieving. In this work, we explore how to lower bound the cost of using Aono et al.'s techniques on lattice enumeration with extreme cylinder pruning, assuming a limit to the maximum depth that a quantum computation can achieve without decohering, with the objective of better understanding the practical applicability of quantum backtracking in lattice cryptanalysis.