International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Alessandro Budroni

Publications

Year
Venue
Title
2024
TCHES
Enabling PERK and other MPC-in-the-Head Signatures on Resource-Constrained Devices
One category of the digital signatures submitted to the NIST Post-Quantum Cryptography Standardization Process for Additional Digital Signature Schemes comprises proposals constructed leveraging the MPC-in-the-Head (MPCitH) paradigm. Typically, this framework is characterized by the computation and storage in sequence of large data structures both in signing and verification algorithms, resulting in heavy memory consumption. While some research on the efficiency of these schemes on high-performance machines has been done, studying their performance and optimization on resource-constrained ones still needs to be explored. In this work, we aim to address this gap by (1) introducing a general method to reduce the memory footprint of MPCitH schemes and analyzing its application to several MPCitH proposed schemes in the NIST Standardization Process. Additionally, (2) we conduct a detailed examination of potential memory optimizations in PERK, resulting in a streamlined version of the signing and verification algorithms with a reduced memory footprint ranging from 22 to 85 KB, down from the original 0.3 to 6 MB. Finally, (3) we introduce the first implementation of PERK tailored for Arm Cortex M4 alongside extensive experiments and comparisons against reference implementations.
2024
ASIACRYPT
Don't Use It Twice! Solving Relaxed Linear Equivalence Problems
The Linear Code Equivalence (LCE) Problem has received increased attention in recent years due to its applicability in constructing efficient digital signatures. Notably, the LESS signature scheme based on LCE is under consideration for the NIST post-quantum standardization process, along with the MEDS signature scheme that relies on an extension of LCE to the rank metric, namely Matrix Code Equivalence (MCE) Problem. Building upon these developments, a family of signatures with additional properties, including linkable ring, group, and threshold signatures, has been proposed. These novel constructions introduce relaxed versions of LCE (and MCE), wherein multiple samples share the same secret equivalence. Despite their significance, these variations have often lacked a thorough security analysis, being assumed to be as challenging as their original counterparts. Addressing this gap, our work delves into the sample complexity of LCE and MCE --- precisely, the sufficient number of samples required for efficient recovery of the shared secret equivalence. Our findings reveal, for instance, that one should not use the same secret twice in the LCE setting since this enables a polynomial time (and memory) algorithm to retrieve the secret. Consequently, our results unveil the insecurity of two advanced signatures based on variants of the LCE Problem.