International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Avishek Majumder

Publications

Year
Venue
Title
2025
CIC
Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy
<p> Dynamic Searchable Symmetric Encryption (DSSE) allows users to securely outsource their data to cloud servers while enabling efficient searches and updates. The verifiability property of a DSSE construction ensures that users do not accept incorrect search results from a malicious server while the fault-tolerance property guarantees the construction functions correctly even with faulty queries from the client (e.g., adding a keyword to a document multiple times, deleting a keyword from a document that was never added). There have been very few studies on fault-tolerant verifiable DSSE schemes that achieve forward privacy, and none of the existing constructions achieve backward privacy. In this paper, we aim to design an efficient fault-tolerant verifiable DSSE scheme that provides both forward and backward privacy. First, we propose a basic fault-tolerant verifiable DSSE scheme, dubbed $\textsf{FVS1}$, which achieves forward privacy and stronger backward privacy with the update pattern (BPUP). However, the communication complexity for the search operation of this scheme is $O(u)$, where $u$ is the total number of updates for the search keyword. To address this issue, we propose an efficient variant of the previous DSSE scheme, called $\textsf{FVS2}$, which achieves the same functionality with an optimized communication complexity of $O(m+u')$ for search queries. Here $m$ is the size of the result set and $u'$ is the number of update operations made on the queried keyword after the previous search made on the keyword. This improvement comes at the cost of some additional information leakage, but it ensures the construction achieves backward privacy with the link pattern (BPLP). </p>
2024
CIC
Reinventing BrED: A Practical Construction
Avishek Majumder Sayantan Mukherjee
<p> Broadcast Encryption (BE) allows a sender to send an encrypted message to multiple receivers. In a typical broadcast encryption scenario, the broadcaster decides the set of users who can decrypt a particular ciphertext (denoted as the privileged set). Gritti et al. (IJIS'16) introduced a new primitive called Broadcast Encryption with Dealership (BrED), where the dealer decides the privileged set. A BrED scheme allows a dealer to buy content from the broadcaster and sell it to users. It provides better flexibility in managing a large user base. To date, quite a few different constructions of BrED schemes have been proposed by the research community.</p><p> We find that all existing BrED schemes are insecure under the existing security definitions. We demonstrate a concrete attack on all the existing schemes in the purview of the existing security definition. We also find that the security definitions proposed in the state-of-the-art BrED schemes do not capture the real world. We argue about the inadequacy of existing definitions and propose a new security definition that models the real world more closely. Finally, we propose a new BrED construction and prove it to be secure in our newly proposed security model. </p>