CryptoDB
Varun Madathil
Publications and invited talks
Year
Venue
Title
2025
CIC
Round-Optimal Compiler for Semi-Honest to Malicious Oblivious Transfer via CIH
Abstract
<p> A central question in the theory of cryptography is whether we can build protocols that achieve stronger security guarantees, e.g., security against malicious adversaries, by combining building blocks that achieve much weaker security guarantees, e.g., security only against semi-honest adversaries; and with the minimal number of rounds. An additional focus is whether these building blocks can be used only as a black-box. Since Oblivious Transfer (OT) is the necessary and sufficient building block to securely realize any two-party (and multi-party) functionality, theoreticians often focus on proving whether maliciously secure OT can be built from a weaker notion of OT.</p><p>There is a rich body of literature that provides (black-box) compilers that build malicious OT from OTs that achieve weaker security such as semi-malicious OT and defensibly secure OT, within the minimal number of rounds. However, no round-optimal compiler exists that builds malicious OT from the weakest notion of semi-honest OT, in the plain model.</p><p>Correlation intractable hash (CIH) functions are special hash functions whose properties allow instantiating the celebrated Fiat-Shamir transform, and hence reduce the round complexity of public-coin proof systems.</p><p>In this work, we devise the first round-optimal compiler from semi-honest OT to malicious OT, by a novel application of CIH for collapsing rounds in the plain model. We provide the following contributions. First, we provide a new CIH-based round-collapsing construction for general cut-and-choose. This gadget can be used generally to prove the correctness of the evaluation of a function. Then, we use our gadget to build the first round-optimal compiler from semi-honest OT to malicious OT.</p><p> Our compiler uses the semi-honest OT protocol and the other building blocks in a black-box manner. However, for technical reasons, the underlying CIH construction requires the upper bound of the circuit size of the semi-honest OT protocol used. The need for this upper-bound makes our protocol not fully black-box, hence is incomparable with existing, fully black-box, compilers.</p>
2025
ASIACRYPT
PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible
Abstract
In cryptocurrencies, all transactions are public.
For their adoption, it is important that these transactions, while publicly verifiable, do not leak information about the identity and the balances of the transactors.
For UTXO-based cryptocurrencies, there are well-established approaches (e.g., ZCash) that guarantee full privacy to the transactors. Full privacy in UTXO means that each transaction is anonymous within the set of all private transactions ever posted on the blockchain.
In contrast, for account-based cryptocurrencies (e.g., Ethereum) full privacy, that is, privacy within the set of all accounts, seems to be impossible to achieve within the constraints of blockchain transactions (e.g., they have to fit in a block).
Indeed, every approach proposed in the literature achieves only a much weaker privacy guarantee called k-anonymity where a transactor is private within a set of $k$ account holders.
$k-$anonymity is achieved by adding k accounts to the transaction, which concretely limits the anonymity guarantee to a very small constant (e.g., $~$64 for QuisQuis and ~256 for anonymous Zether), compared to the set of all possible accounts.
In this paper, we propose a completely new approach that does not achieve anonymity by including more accounts in the transaction, but instead makes the transaction itself ``smarter''.
Our key contribution is to provide a mechanism whereby a compact transaction can be used to correctly update all accounts. Intuitively, this guarantees that all accounts are equally likely to be the recipients/sender of such a transaction.
We, therefore, provide the first protocol that guarantees full privacy in account-based cryptocurrencies PriFHEte
The contribution of this paper is theoretical.
Our main objective is to demonstrate that achieving
full privacy in account-based cryptocurrency is actually possible.
We see our work as opening a door to new possibilities for anonymous account-based cryptocurrencies.
Nonetheless, in this paper, we also discuss PriFHEte's potential to be developed in practice by leveraging the power of off-chain scalability solutions such as zk rollups.
Coauthors
- Varun Madathil (2)
- Alessandra Scafuro (2)
- Tanner Verber (1)