International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Nicolas Ye

Publications

Year
Venue
Title
2025
TCHES
Designing a General-Purpose 8-bit (T)FHE Processor Abstraction
Making the most of TFHE programmable bootstrapping to evaluate functions or operators otherwise challenging to perform with only the native addition and multiplication of the scheme is a very active line of research. In this paper, we systematize this approach and apply it to build an 8-bit FHE processor abstraction, i.e., a software entity that works over FHE-encrypted 8-bit data and presents itself to the programmer by means of a conventional-looking assembly instruction set. In doing so, we provide several homomorphic LookUp Table (LUT) dereferencing operators based on variants of the tree-based method and show that they are the most efficient option for manipulating encryptions of 8-bit data (optimally represented as two basis 16 digits). We then systematically apply this approach over a set of around 50 instructions, including, notably, conditional assignments, divisions, or fixed-point arithmetic operations. We further test the approach on several simple algorithms, including the execution of a neuron with a sigmoid activation function with 16-bit precision. We conclude the paper by comparing our work to the FHE compilers available in the state of the art. Finally, this work reveals that a very limited set of functional bootstrapping patterns is versatile and efficient enough to achieve general-purpose FHE computations beyond the boolean circuit approach. As such, these patterns may be an appropriate target for further works on advanced software optimizations or hardware implementations.