International Association for Cryptologic Research

International Association
for Cryptologic Research


Nelly Fazio


Scalable Public-Key Tracing and Revoking
Traitor Tracing Schemes constitute a very useful tool against piracy in the context of digital content broadcast. In such multi-recipient encryption schemes, each decryption key is fingerprinted and when a pirate decoder is discovered, the authorities can trace the identities of the users that contributed in its construction (called traitors). Public-key traitor tracing schemes allow for a multitude of non-trusted content providers using the same set of keys, which makes the scheme ``server-side scalable.'' To make such schemes also ``client-side scalable,'' i.e. long lived and usable for a large population of subscribers that changes dynamically over time, it is crucial to implement efficient Add-user and Remove-user operations. Previous work on public-key traitor tracing did not address this dynamic scenario thoroughly, and there is no efficient scalable public key traitor tracing scheme that allows an increasing number of Add-user and Remove-user operations. To address these issues, we introduce the model of Scalable Public-Key Traitor Tracing, and present the first construction of such a scheme. Our model mandates for deterministic traitor tracing and an unlimited number of efficient Add-user operations and Remove-user operations. A scalable system achieves an unlimited number of revocations while retaining high level of efficiency by dividing the run-time of the system into periods. Each period has a saturation level for the number of revocations. When a period becomes saturated, an _efficient_ New-period operation is issued by the system server that resets the saturation level. We present a formal adversarial model for our system taking into account its periodic structure, and we prove our construction secure, both against adversaries that attempt to cheat the revocation mechanism as well as against adversaries that attempt to cheat the traitor tracing mechanism.
ID-Based Encryption for Complex Hierarchies with Applications to Forward Security and Broadcast Encryption
A forward-secure encryption scheme protects secret keys from exposure by evolving the keys with time. Forward security has several unique requirements in Hierarchical Identity-Based Encryption (HIBE) scheme: (1) users join dynamically; (2) encryption is joining-time-oblivious; (3) users evolve secret keys autonomously. We present a scalable forward-secure HIBE scheme satisfying the above properties. Note that a naive combination of Gentry-Silverberg HIBE scheme with the forward-secure Public-Key Encryption scheme by Canetti, Halevi and Katz would not meet the requirements. We also show how our fs-HIBE scheme can be used to construct a forward-secure public-key Broadcast Encryption scheme, which protects the secrecy of prior transmissions in the Broadcast Encryption setting. We further generalize fs-HIBE into a collusion-resistant Multiple Hierarchical ID-Based Encryption scheme, which can be used for secure communications with entities having multiple roles in Role-Based Access Control. The security of our schemes is based on the Bilinear Diffie-Hellman assumption in the random oracle model.
Public Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack
Yevgeniy Dodis Nelly Fazio
A (public key) Trace and Revoke Scheme combines the functionality of broadcast encryption with the capability of traitor tracing. Specifically, (1) a trusted center publishes a single public key and distributes individual secret keys to the users of the system; (2) anybody can encrypt a message so that all but a specified subset of ``revoked'' users can decrypt the resulting ciphertext; and (3) if a (small) group of users combine their secret keys to produce a ``pirate decoder'', the center can trace at least one of the ``traitors'' given access to this decoder. We construct the first chosen ciphertext (CCA2) secure Trace and Revoke Scheme based on the DDH assumption. Our scheme is also the first adaptively secure scheme, allowing the adversary to corrupt players at any point during execution, while prior works (e.g., [NP00,TT01]) only achieves a very weak form of non-adaptive security even against chosen plaintext attacks. In fact, no CCA2 scheme was known even in the symmetric setting. Of independent interest, we present a slightly simpler construction that shows a ``natural separation'' between the classical notion of CCA2 security and the recently proposed [Sho01,ADR02] relaxed notion of gCCA2 security.

Program Committees

PKC 2014
TCC 2014
TCC 2010
PKC 2009