International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Yi Mu

Publications

Year
Venue
Title
2017
CRYPTO
2016
ASIACRYPT
2016
ASIACRYPT
2014
EPRINT
2014
EPRINT
2010
PKC
2010
FSE
2010
EPRINT
Enhanced Security Notions for Dedicated-Key Hash Functions: Definitions and Relationships
In this paper, we revisit security notions for dedicated-key hash functions, considering two essential theoretical aspects; namely, formal definitions for security notions, and the relationships among them. Our contribution is twofold. First, we provide a new set of enhanced security notions for dedicated-key hash functions. The provision of this set of enhanced properties has been motivated by the introduction of enhanced target collision resistance (eTCR) property by Halevi and Krawczyk at Crypto 2006. We notice that the eTCR property does not belong to the set of the seven security notions previously investigated by Rogaway and Shrimpton at FSE 2004, namely: Coll, Sec, aSec, eSec, Pre, aPre and ePre. The fact that eTCR, as a new useful property, is the enhanced variant of the well-known TCR (a.k.a. eSec or UOWHF) property motivates one to investigate the possibility of providing enhanced variants for the other properties. We provide such an enhanced set of properties. Interestingly, there are six enhanced variants of security notions available, excluding ``ePre'' which can be demonstrated to be non-enhanceable. As the second and main part of our contribution, we provide a full picture of relationships (i.e. implications and separations) among the (thirteen) security properties including the (six) enhanced properties and the previously considered seven properties. The implications and separations are supported by formal proofs (reductions) and/or counterexamples in the concrete-security framework.
2009
EUROCRYPT
2009
FSE
2009
EPRINT
Enhanced Target Collision Resistant Hash Functions Revisited
Enhanced Target Collision Resistance (eTCR) property for a hash function was put forth by Halevi and Krawczyk in Crypto 2006, in conjunction with the randomized hashing mode that is used to realize such a hash function family. eTCR is a strengthened variant of the well-known TCR (or UOWHF) property for a hash function family (i.e. a dedicated-key hash function). The contributions of this paper are twofold. First, we compare the new eTCR property with the well-known collision resistance (CR) property, where both properties are considered for a dedicated-key hash function. We show there is a separation between the two notions, that is, in general, eTCR property cannot be claimed to be weaker (or stronger) than CR property for any arbitrary dedicated-key hash function. Second, we consider the problem of eTCR property preserving domain extension. We study several domain extension methods for this purpose, including (Plain, Strengthened, and Prefix-free) Merkle-Damg{\aa}rd, Randomized Hashing (considered in dedicated-key hash setting), Shoup, Enveloped Shoup, XOR Linear Hash (XLH), and Linear Hash (LH) methods. Interestingly, we show that the only eTCR preserving method is a nested variant of LH which has a drawback of having high key expansion factor. Therefore, it is interesting to design a new and efficient eTCR preserving domain extension in the standard model.
2008
EPRINT
Constant-Size Dynamic $k$-TAA
$k$-times anonymous authentication ($k$-TAA) schemes allow members of a group to be authenticated anonymously by application providers for a bounded number of times. Dynamic $k$-TAA allows application providers to independently grant or revoke users from their own access group so as to provide better control over their clients. In terms of time and space complexity, existing dynamic $k$-TAA schemes are of complexities O($k$), where $k$ is the allowed number of authentication. In this paper, we construct a dynamic $k$-TAA scheme with space and time complexities of $O(log(k))$. We also outline how to construct dynamic $k$-TAA scheme with a constant proving effort. Public key size of this variant, however, is $O(k)$. We then describe a trade-off between efficiency and setup freeness of AP, in which AP does not need to hold any secret while maintaining control over their clients. To build our system, we modify the short group signature scheme into a signature scheme and provide efficient protocols that allow one to prove in zero-knowledge the knowledge of a signature and to obtain a signature on a committed block of messages. We prove that the signature scheme is secure in the standard model under the $q$-SDH assumption. Finally, we show that our dynamic $k$-TAA scheme, constructed from bilinear pairing, is secure in the random oracle model.
2007
PKC
2007
EPRINT
Group Decryption
Anonymity is one of the main concerns in group-oriented cryptography. However, most efforts, for instance, group signatures and ring signatures, are only made to provide anonymity on the sender's point of view. There is only a few work done to ensure anonymity in a cryptographic sense on the recipient's point of view n group-oriented communications. In this paper, we formalize the notion of group decryptions. It can be viewed as an analogousof group signatures in the context of public key encryptions. In this notion, a sender can encrypt a committed message intended to any member of a group, managed by a group manager, while the recipient of the ciphertext remains anonymous. The sender can convince a verifier about this fact without leaking the plaintext or the identity of the recipient. If required, the group manager can verifiably open the identity of the recipient. We propose an efficient group decryption scheme that is proven secure in the random oracle model. The overhead in both computation and communication is independent of the group size. A full ciphertex is about 0.2K bytes in a typical implementation and the scheme is practical to protect the recipient identity in privacy-sensitive group-oriented communications.
2007
EPRINT
Nominative Signature: Application, Security Model and Construction
Since the introduction of nominative signature in 1996, there have been only a few schemes proposed and all of them have already been found flawed. In addition, there is no formal security model defined. Even more problematic, there is no convincing application proposed. Due to these problems, the research of nominative signature has almost stalled and it is unknown if a secure nominative signature scheme can be built or there exists an application for it. In this paper, we give positive answers to these problems. First, we illustrate that nominative signature is a better tool for building user certification systems which are originally believed to be best implemented using a universal designated-verifier signature. Second, we propose a formal definition and a rigorous set of adversarial models for nominative signature. Third, we show that Chaum's undeniable signature can be transformed efficiently to a nominative signature and prove its security.
2007
EPRINT
Practical Compact E-Cash
Compact e-cash schemes allow a user to withdraw a wallet containing $k$ coins in a single operation, each of which the user can spend unlinkably. One big open problem for compact e-cash is to allow multiple denominations of coins to be spent efficiently without executing the spend protocol a number of times. In this paper, we give a (\emph{partial}) solution to this open problem by introducing two additional protocols, namely, compact spending and batch spending. Compact spending allows spending all the $k$ coins in one operation while batch spending allows spending any number of coins in the wallet in a single execution. We modify the security model of compact e-cash to accommodate these added protocols and present a generic construction. While the spending and compact spending protocol are of constant time and space complexities, complexities of batch spending is linear in the number of coins to be spent together. Thus, we regard our solution to the open problem as {\it partial}. We provide two instantiations under the $q$-SDH assumption and the LRSW assumption respectively and present security arguments for both instantiations in the random oracle model.
2007
EPRINT
Practical Anonymous Divisible E-Cash From Bounded Accumulators
We present an efficient off-line divisible e-cash scheme which is \emph{truly anonymous} without a trusted third party. This is the second scheme in the literature which achieves full unlinkability and anonymity, after the seminal work proposed by Canard and Gouget. The main trick of our scheme is the use of a bounded accumulator in combination with the classical binary tree approach. The aims of this paper are twofold. Firstly, we analyze Canard and Gouget's seminal work on the efficient off-line divisible e-cash. We point out some subtleties on the parameters generation of their scheme. Moreover, spending a coin of small value requires computation of several hundreds of multi-based exponentiations, which is very costly. In short, although this seminal work provides a new approach of achieving a truly anonymous divisible e-cash, unfortunately it is rather impractical. Secondly, we present our scheme that uses a novel approach of incorporating a bounded accumulator. In terms of time and space complexities, our scheme is $50$ to $100$ times more efficient than Canard and Gouget's work in the spend protocol at the cost of an $10$ to $500$ (the large range is due to whether pre-processing is taken into account and the probabilistic nature of our withdrawal protocol) times less efficient withdrawal protocol. We believe this trade-off between the withdrawal protocol and the spend protocol is reasonable as the former protocol is to be executed much less frequent than the latter. Nonetheless, while their scheme provides an affirmative answer to whether divisible e-cash can be \emph{truly anonymous}, our result puts it a step further and we show that truly anonymous divisible e-cash can be \emph{practical}.
2006
EPRINT
Online/Offline Signatures and Multisignatures for AODV and DSR Routing Security
Efficient authentication is one of important security requirements in mobile ad hoc network (MANET) routing systems. The techniques of digital signatures are generally considered as the best candidates to achieve strong authentication. However, using normal digital signature schemes is too costly to MANET due to the computation overheads. Considering the feasibility of incorporating digital signatures in MANET, we incorporate the notion of online/offline signatures, where the computational overhead is shifted to the offline phase. However, due to the diversity of different routing protocols, a universal scheme that suits all MANET routing systems does not exist in the literature. Notably, an authentication scheme for the AODV routing is believed to be not suitable to the DSR routing. In this paper, we first introduce an efficient ID-based online/offline scheme for authentication in AODV and then provide a formal transformation to convert the scheme to an ID-based online/offline multisignature scheme. Our scheme is unique, in the sense that a single ID-based online/offline signature scheme can be applied to both AODV and DSR routing protocols. We provide the generic construction as well as the concrete schemes to show an instantiation of the generic transformation. We also provide security proofs for our schemes based on the random oracle model. Finally, we provide an application of our schemes in the dynamic source routing protocol.
2006
EPRINT
Malicious KGC Attacks in Certificateless Cryptography
Identity-based cryptosystems have an inherent key escrow issue, that is, the Key Generation Center (KGC) always knows user secret key. If the KGC is malicious, it can always impersonate the user. Certificateless cryptography, introduced by Al-Riyami and Paterson in 2003, is intended to solve this problem. However, in all the previously proposed certificateless schemes, it is always assumed that the malicious KGC starts launching attacks (so-called Type II attacks) only after it has generated a master public/secret key pair honestly. In this paper, we propose new security models that remove this assumption for both certificateless signature and encryption schemes. Under the new models, we show that a class of certificateless encryption and signature schemes proposed previously are insecure. These schemes still suffer from the key escrow problem. On the other side, we also give new proofs to show that there are two generic constructions, one for certificateless signature and the other for certificateless encryption, proposed recently that are secure under our new models.
2005
EPRINT
Breaking and Repairing Trapdoor-free Group Signature Schemes from Asiacrypt 2004
Group signature schemes allow a member of a group to sign messages anonymously on behalf of the group. In the case of later dispute, a designated group manager can revoke the anonymity and identify the originator of a signature. In Asiacrypt 2004, Nguyen and Safavi-Naini proposed a group signature scheme that has a constant-size public key and signature length, and more importantly, their group signature scheme does not require trapdoor. Their scheme is very efficient and the sizes of signatures are shorter compared to the existing schemes that were proposed earlier. In this paper, we point out that Nguyen and Safavi-Naini's scheme is insecure. In particular, we provide a cryptanalysis of the scheme that allows a non-member of the group to sign on behalf of the group. The resulting group signature can convince any third party that a member of the group has indeed generated such a signature, although none of the members has done it. Therefore, in the case of dispute, the group manager cannot identify who has signed the message. We also provide a new scheme that does not suffer against this problem.
2005
EPRINT
A New Short Signature Scheme Without Random Oracles from Bilinear Pairings
In this paper, we propose a new signature scheme that is existentially unforgeable under a chosen message attack without random oracle. The security of our scheme depends on a new complexity assumption called the $k$+1 square roots assumption. We also discuss the relationship between the $k$+1 square roots assumption and some related problems and provide some conjectures. Moreover, the $k$+1 square roots assumption can be used to construct shorter signatures under the random oracle model. As some applications, a new chameleon hash signature scheme and a on-line/off-line signature scheme and a new efficient anonymous credential scheme based on the proposed signature scheme are presented.
2004
EPRINT
On the Ambiguity of Concurrent Signatures
We point out that the notion of {\em ambiguity} introduced in the concurrent signatures proposed by Chen, Kudla, and Paterson in Eurocrypt 2004 is incorrect. Any third party who observed two signatures can differentiate who has/have produced the signatures by performing the verification algorithm. We note that the model proposed in the paper is sound, but the concrete scheme does not really provide what is required in the model.