International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Martin Hirt

Publications

Year
Venue
Title
2021
TCC
Round-Efficient Byzantine Agreement and Multi-Party Computation with Asynchronous Fallback 📺
Protocols for Byzantine agreement (BA) and secure multi-party computation (MPC) can be classified according to the underlying communication model. The two most commonly considered models are the synchronous one and the asynchronous one. Synchronous protocols typically lose their security guarantees as soon as the network violates the synchrony assumptions. Asynchronous protocols remain secure regardless of the network conditions, but achieve weaker security guarantees even when the network is synchronous. Recent works by Blum, Katz and Loss [TCC'19], and Blum, Liu-Zhang and Loss [CRYPTO'20] introduced BA and MPC protocols achieving security guarantees in both settings: security up to $t_s$ corruptions in a synchronous network, and up to $t_a$ corruptions in an asynchronous network, under the provably optimal threshold trade-offs $t_a \le t_s$ and $t_a + 2t_s < n$. However, current solutions incur a high synchronous round complexity when compared to state-of-the-art purely synchronous protocols. When the network is synchronous, the round complexity of BA protocols is linear in the number of parties, and the round complexity of MPC protocols also depends linearly on the depth of the circuit to evaluate. In this work, we provide round-efficient constructions for both primitives with optimal resilience: fixed-round and expected constant-round BA protocols, and an MPC protocol whose round complexity is independent of the circuit depth.
2021
TCC
Adaptive Security of Multi-Party Protocols, Revisited 📺
The goal of secure multi-party computation (MPC) is to allow a set of parties to perform an arbitrary computation task, where the security guarantees depend on the set of parties that are corrupted. The more parties are corrupted, the less is guaranteed, and typically the guarantees are completely lost when the number of corrupted parties exceeds a certain corruption bound. Early and also many recent protocols are only statically secure in the sense that they provide no security guarantees if the adversary is allowed to choose adaptively which parties to corrupt. Security against an adversary with such a strong capability is often called adaptive security and a significant body of literature is devoted to achieving adaptive security, which is known as a difficult problem. In particular, a main technical obstacle in this context is the so-called ``commitment problem'', where the simulator is unable to consistently explain the internal state of a party with respect to its pre-corruption outputs. As a result, protocols typically resort to the use of cryptographic primitives like non-committing encryption, incurring a substantial efficiency loss. This paper provides a new, clean-slate treatment of adaptive security in MPC, exploiting the specification concept of constructive cryptography (CC). A new natural security notion, called \cc-adaptive security, is proposed, which is technically weaker than standard adaptive security but nevertheless captures security against a fully adaptive adversary. Known protocol examples separating between adaptive and static security are also insecure in our notion. Moreover, our notion avoids the commitment problem and thereby the need to use non-committing or equivocal tools. We exemplify this by showing that the protocols by Cramer, Damgard and Nielsen (EUROCRYPT'01) for the honest majority setting, and (the variant without non-committing encryption) by Canetti, Lindell, Ostrovsky and Sahai (STOC'02) for the dishonest majority setting, achieve \cc-adaptive security. The latter example is of special interest since all \uc-adaptive protocols in the dishonest majority setting require some form of non-committing encryption or equivocal tools.
2021
TCC
On Communication-Efficient Asynchronous MPC with Adaptive Security 📺
Secure multi-party computation (MPC) allows a set of $n$ parties to jointly compute an arbitrary computation over their private inputs. Two main variants have been considered in the literature according to the underlying communication model. Synchronous MPC protocols proceed in rounds, and rely on the fact that the communication network provides strong delivery guarantees within each round. Asynchronous MPC protocols achieve security guarantees even when the network delay is arbitrary. While the problem of MPC has largely been studied in both variants with respect to both feasibility and efficiency results, there is still a substantial gap when it comes to communication complexity of adaptively secure protocols. Concretely, while adaptively secure synchronous MPC protocols with linear communication are known for a long time, the best asynchronous protocol communicates $\mathcal{O}(n^4 \kappa)$ bits per multiplication. In this paper, we make progress towards closing this gap by providing two protocols. First, we present an adaptively secure asynchronous protocol with optimal resilience $t<n/3$ and $\mathcal{O}(n^2 \kappa)$ bits of communication per multiplication, improving over the state of the art protocols in this setting by a quadratic factor in the number of parties. The protocol has cryptographic security and follows the CDN approach [Eurocrypt'01], based on additive threshold homomorphic encryption. Second, we show an optimization of the above protocol that tolerates up to $t<(1-\epsilon)n/3$ corruptions and communicates $\mathcal{O}(n\cdot \poly(\kappa))$ bits per multiplication under stronger assumptions.
2016
CRYPTO
2016
ASIACRYPT
2014
TCC
2014
ASIACRYPT
2013
CRYPTO
2013
ASIACRYPT
2013
EUROCRYPT
2010
EUROCRYPT
2008
TCC
2008
TCC
2008
ASIACRYPT
2007
ASIACRYPT
2007
ASIACRYPT
2006
CRYPTO
2006
TCC
2005
ASIACRYPT
2005
EUROCRYPT
2003
EUROCRYPT
2001
CRYPTO
2000
ASIACRYPT
2000
EUROCRYPT
2000
JOFC
1999
ASIACRYPT
1999
EUROCRYPT
1998
CRYPTO

Program Committees

TCC 2018
Eurocrypt 2018
Eurocrypt 2016
TCC 2015
TCC 2014
Eurocrypt 2013
TCC 2012
PKC 2011
Crypto 2007
Eurocrypt 2006
PKC 2005
Eurocrypt 2001