International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Francisco Rodríguez-Henríquez

Publications

Year
Venue
Title
2022
ASIACRYPT
SwiftEC: Shallue--van de Woestijne Indifferentiable Function to Elliptic Curves 📺
Jorge Chavez-Saab Francisco Rodriguez-Henriquez Mehdi Tibouchi
Hashing arbitrary values to points on an elliptic curve is a required step in many cryptographic constructions, and a number of techniques have been proposed to do so over the years. One of the first ones was due to Shallue and van de Woestijne (ANTS-VII), and it had the interesting property of applying to essentially all elliptic curves over finite fields. It did not, however, have the desirable property of being *indifferentiable from a random oracle* when composed with a random oracle to the base field. Various approaches have since been considered to overcome this limitation, starting with the foundational work of Brier et al. (CRYPTO 2011). For example, if f: F_q→E(F_q) is the Shallue--van de Woestijne (SW) map and H, H' are *two* independent random oracles, we now know that m↦f(H(m))+f(H'(m)) is indifferentiable from a random oracle. Unfortunately, this approach has the drawback of being twice as expensive to compute than the straightforward, but not indifferentiable, m↦f(H(m)). Most other solutions so far have had the same issue: they are at least as costly as two base field exponentiations, whereas plain encoding maps like f cost only one exponentiation. Recently, Koshelev (DCC 2022) provided the first construction of indifferentiable hashing at the cost of one exponentiation, but only for a very specific class of curves (some of those with j-invariant 0), and using techniques that are unlikely to apply more broadly. In this work, we revisit this long-standing open problem, and observe that the SW map actually fits in a one-parameter family (f_u)_{u∈F_q} of encodings, such that for independent random oracles H, H', F: m↦f_{H'(m)}(H(m)) is indifferentiable. Moreover, on a very large class of curves (essentially those that are either of odd order or of order divisible by 4), the one-parameter family admits a rational parametrization, which lets us compute F at almost the same cost as small f, and finally achieve indifferentiable hashing to most curves with a single exponentiation. Our new approach also yields an improved variant of the Elligator Squared technique of Tibouchi (FC 2014) that represents points of arbitrary elliptic curves as close-to-uniform random strings.
2019
JOFC
Koblitz Curves over Quadratic Fields
Thomaz Oliveira Julio López Daniel Cervantes-Vázquez Francisco Rodríguez-Henríquez
In this work, we retake an old idea that Koblitz presented in his landmark paper (Koblitz, in: Proceedings of CRYPTO 1991. LNCS, vol 576, Springer, Berlin, pp 279–287, 1991 ), where he suggested the possibility of defining anomalous elliptic curves over the base field $${\mathbb {F}}_4$$ F 4 . We present a careful implementation of the base and quadratic field arithmetic required for computing the scalar multiplication operation in such curves. We also introduce two ordinary Koblitz-like elliptic curves defined over $${\mathbb {F}}_4$$ F 4 that are equipped with efficient endomorphisms. To the best of our knowledge, these endomorphisms have not been reported before. In order to achieve a fast reduction procedure, we adopted a redundant trinomial strategy that embeds elements of the field $${\mathbb {F}}_{4^{m}},$$ F 4 m , with m a prime number, into a ring of higher order defined by an almost irreducible trinomial. We also suggest a number of techniques that allow us to take full advantage of the native vector instructions of high-end microprocessors. Our software library achieves the fastest timings reported for the computation of the timing-protected scalar multiplication on Koblitz curves, and competitive timings with respect to the speed records established recently in the computation of the scalar multiplication over binary and prime fields.
2016
CHES
2013
CHES
2011
CHES
2009
CHES

Program Committees

CHES 2022
CHES 2021
Asiacrypt 2021
CHES 2020
CHES 2019
CHES 2009