International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Gora Adj

Publications

Year
Venue
Title
2024
TCHES
MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head
Since 2016’s NIST call for standardization of post-quantum cryptographic primitives, developing efficient post-quantum secure digital signature schemes has become a highly active area of research. The difficulty in constructing such schemes is evidenced by NIST reopening the call in 2022 for digital signature schemes, because of missing diversity in existing proposals. In this work, we introduce the new postquantum digital signature scheme MiRitH. As direct successor of a scheme recently developed by Adj, Rivera-Zamarripa and Verbel (Africacrypt ’23), it is based on the hardness of the MinRank problem and follows the MPC-in-the-Head paradigm. We revisit the initial proposal, incorporate design-level improvements and provide more efficient parameter sets. We also provide the missing justification for the quantum security of all parameter sets following NIST metrics. In this context we design a novel Grover-amplified quantum search algorithm for solving the MinRank problem that outperforms a naive quantum brute-force search for the solution.MiRitH obtains signatures of size 5.7 kB for NIST category I security and therefore competes for the smallest signatures among any post-quantum signature following the MPCitH paradigm.At the same time MiRitH offers competitive signing and verification timings compared to the state of the art. To substantiate those claims we provide extensive implementations. This includes a reference implementation as well as optimized constant-time implementations for Intel processors (AVX2), and for the ARM (NEON) architecture. The speedup of our optimized AVX2 implementation relies mostly on a redesign of the finite field arithmetic, improving over existing implementations as well as an improved memory management.
2024
TCHES
Optimized One-Dimensional SQIsign Verification on Intel and Cortex-M4
SQIsign is a well-known post-quantum signature scheme due to its small combined signature and public-key size. However, SQIsign suffers from notably long signing times, and verification times are not short either. To improve this, recent research has explored both one-dimensional and two-dimensional variants of SQIsign, each with distinct characteristics. In particular, SQIsign2D’s efficient signing and verification times have made it a focal point of recent research. However, the absence of an optimized one-dimensional verification implementation hampers a thorough comparison between these different variants. This work bridges this gap in the literature: we provide a state-of-the-art implementation of one-dimensional SQIsign verification, including novel optimizations. We report a record-breaking one-dimensional SQIsign verification time of 8.55 Mcycles on a Raptor Lake Intel processor, closely matching SQIsign2D on the same processor. For uncompressed signatures, the signature size doubles and we verify in only 5.6 Mcycles. Taking advantage of the inherent parallelism available in isogeny computations, we present 5-core variants that can go as low as 1.3 Mcycles. Furthermore, we present the first implementation that supports both 32-bit and 64-bit processors. It includes optimized assembly code for the Cortex-M4 and has been integrated with the pqm4 project. Our results motivate further research into one-dimensional SQIsign, as it boasts unique features among isogeny-based schemes.