International Association for Cryptologic Research

International Association
for Cryptologic Research


Yusuke Sakai


Practical Round-Optimal Blind Signatures in the ROM from Standard Assumptions
Blind signatures serve as a foundational tool for privacy-preserving applications and have recently seen renewed interest due to new applications in blockchains and privacy-authentication tokens. With this, constructing practical round-optimal (i.e., signing consists of the minimum two rounds) blind signatures in the random oracle model (ROM) has been an active area of research, where several impossibility results indicate that either the ROM or a trusted setup is inherent. In this work, we present two round-optimal blind signatures under standard assumptions in the ROM with different approaches: one achieves the smallest sum of the signature and communication sizes, while the other achieves the smallest signature size. Both of our instantiations are based on standard assumptions over asymmetric pairing groups, i.e., CDH, DDH, and/or SXDH. Our first construction is a highly optimized variant of the generic blind signature construction by Fischlin (CRYPTO’06) and has signature and communication sizes 447 B and 303 B, respectively. We progressively weaken the building blocks required by Fischlin and we result in the first blind signature where the sum of the signature and communication sizes fit below 1 KB based on standard assumptions. Our second construction is a semi-generic construction from a specific class of randomizable signature schemes that admits an all-but-one reduction. The signature size is only 96 B while the communication size is 2.2 KB. This matches the previously known smallest signature size while improving the communication size by several orders of magnitude. Finally, both of our constructions rely on a (non-black box) fine-grained analysis of the forking lemma that may be of independent interest.
Attribute-Based Signatures for Unbounded Languages from Standard Assumptions
Attribute-based signature (ABS) schemes are advanced signature schemes that simultaneously provide fine-grained authentication while protecting privacy of the signer. Previously known expressive ABS schemes support either the class of deterministic finite automata and circuits from standard assumptions or Turing machines from the existence of indistinguishability obfuscations.In this paper, we propose the first ABS scheme for a very general policy class, all deterministic Turing machines, from a standard assumption, namely, the Symmetric External Diffie-Hellman (SXDH) assumption. We also propose the first ABS scheme that allows nondeterministic finite automata (NFA) to be used as policies. Although the expressiveness of NFAs are more restricted than Turing machines, this is the first scheme that supports nondeterministic computations as policies.Our main idea lies in abstracting ABS constructions and presenting the concept of history of computations; this allows a signer to prove possession of a policy that accepts the string associated to a message in zero-knowledge while also hiding the policy, regardless of the computational model being used. With this abstraction in hand, we are able to construct ABS for Turing machines and NFAs using a surprisingly weak NIZK proof system. Essentially we only require a NIZK proof system for proving that a (normal) signature is valid. Such a NIZK proof system together with a base signature scheme are, in turn, possible from bilinear groups under the SXDH assumption, and hence so are our ABS schemes.