International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Cécile Dumas

Publications

Year
Venue
Title
2019
TCHES
Deep Learning to Evaluate Secure RSA Implementations 📺
This paper presents the results of several successful profiled side-channel attacks against a secure implementation of the RSA algorithm. The implementation was running on a ARM Core SC 100 completed with a certified EAL4+ arithmetic co-processor. The analyses have been conducted by three experts’ teams, each working on a specific attack path and exploiting information extracted either from the electromagnetic emanation or from the power consumption. A particular attention is paid to the description of all the steps that are usually followed during a security evaluation by a laboratory, including the acquisitions and the observations preprocessing which are practical issues usually put aside in the literature. Remarkably, the profiling portability issue is also taken into account and different device samples are involved for the profiling and testing phases. Among other aspects, this paper shows the high potential of deep learning attacks against secure implementations of RSA and raises the need for dedicated countermeasures.
2019
TCHES
A Comprehensive Study of Deep Learning for Side-Channel Analysis 📺
Recently, several studies have been published on the application of deep learning to enhance Side-Channel Attacks (SCA). These seminal works have practically validated the soundness of the approach, especially against implementations protected by masking or by jittering. Concurrently, important open issues have emerged. Among them, the relevance of machine (and thereby deep) learning based SCA has been questioned in several papers based on the lack of relation between the accuracy, a typical performance metric used in machine learning, and common SCA metrics like the Guessing entropy or the key-discrimination success rate. Also, the impact of the classical side-channel counter-measures on the efficiency of deep learning has been questioned, in particular by the semi-conductor industry. Both questions enlighten the importance of studying the theoretical soundness of deep learning in the context of side-channel and of developing means to quantify its efficiency, especially with respect to the optimality bounds published so far in the literature for side-channel leakage exploitation. The first main contribution of this paper directly concerns the latter point. It is indeed proved that minimizing the Negative Log Likelihood (NLL for short) loss function during the training of deep neural networks is actually asymptotically equivalent to maximizing the Perceived Information introduced by Renauld et al. at EUROCRYPT 2011 as a lower bound of the Mutual Information between the leakage and the target secret. Hence, such a training can be considered as an efficient and effective estimation of the PI, and thereby of the MI (known to be complex to accurately estimate in the context of secure implementations). As a second direct consequence of our main contribution, it is argued that, in a side-channel exploitation context, choosing the NLL loss function to drive the training is sound from an information theory point of view. As a third contribution, classical counter-measures like Boolean masking or execution flow shuffling, initially dedicated to classical SCA, are proved to stay sound against deep Learning based attacks.
2017
CHES
Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures
In the context of the security evaluation of cryptographic implementations, profiling attacks (aka Template Attacks) play a fundamental role. Nowadays the most popular Template Attack strategy consists in approximating the information leakages by Gaussian distributions. Nevertheless this approach suffers from the difficulty to deal with both the traces misalignment and the high dimensionality of the data. This forces the attacker to perform critical preprocessing phases, such as the selection of the points of interest and the realignment of measurements. Some software and hardware countermeasures have been conceived exactly to create such a misalignment. In this paper we propose an end-to-end profiling attack strategy based on the Convolutional Neural Networks: this strategy greatly facilitates the attack roadmap, since it does not require a previous trace realignment nor a precise selection of points of interest. To significantly increase the performances of the CNN, we moreover propose to equip it with the data augmentation technique that is classical in other applications of Machine Learning. As a validation, we present several experiments against traces misaligned by different kinds of countermeasures, including the augmentation of the clock jitter effect in a secure hardware implementation over a modern chip. The excellent results achieved in these experiments prove that Convolutional Neural Networks approach combined with data augmentation gives a very efficient alternative to the state-of-the-art profiling attacks.
2014
EPRINT