International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Håkon Jacobsen

Publications

Year
Venue
Title
2023
CRYPTO
On Optimal Tightness for Key Exchange with Full Forward Secrecy via Key Confirmation
A standard paradigm for building key exchange protocols with full forward secrecy (and explicit authentication) is to add key confirmation messages to an underlying protocol having only weak forward secrecy (and implicit authentication). Somewhat surprisingly, we show through an impossibility result that this simple trick must nevertheless incur a linear tightness loss in the number of parties for many natural protocols. This includes Krawczyk’s HMQV protocol (CRYPTO 2005) and the protocol of Cohn-Gordon et al. (CRYPTO 2019). Cohn-Gordon et al. gave a very efficient underlying protocol with weak forward secrecy having a linear security loss, and showed that this is optimal for certain reductions. However, they also claimed that full forward secrecy can be achieved via key confirmation without any additional loss. Our impossibility result disproves this claim, showing that their approach, in fact, has an overall loss which is quadratic. Motivated by this predicament we seek to restore the original lin- ear loss claim of Cohn-Gordon et al. by using a different proof strategy. Specifically, we start by lowering the goal for the underlying protocol with weak forward secrecy, to a selective security notion where the adversary must commit to a long-term key it cannot reveal. This allows a tight reduction rather than a linear loss reduction. Next, we show that the protocol can be upgraded to full forward secrecy using key confirmation messages with a linear tightness loss, even when starting from the weaker selective security notion. Thus, our approach yields an overall tightness loss for the fully forward-secret protocol that is only linear, as originally claimed. Finally, we confirm that the underlying protocol of Cohn-Gordon et al. can indeed be proven selectively secure, tightly.
2019
CRYPTO
Highly Efficient Key Exchange Protocols with Optimal Tightness 📺
In this paper we give nearly-tight reductions for modern implicitly authenticated Diffie-Hellman protocols in the style of the Signal and Noise protocols, which are extremely simple and efficient. Unlike previous approaches, the combination of nearly-tight proofs and efficient protocols enables the first real-world instantiations for which the parameters can be chosen in a theoretically sound manner.Our reductions have only a linear loss in the number of users, implying that our protocols are more efficient than the state of the art when instantiated with theoretically sound parameters. We also prove that our security proofs are optimal: a linear loss in the number of users is unavoidable for our protocols for a large and natural class of reductions.
2017
PKC
2016
EUROCRYPT