International Association for Cryptologic Research

International Association
for Cryptologic Research


Weijia Wang

Affiliation: Shanghai Jiaotong University


Efficient Side-Channel Secure Message Authentication with Better Bounds
We investigate constructing message authentication schemes from symmetric cryptographic primitives, with the goal of achieving security when most intermediate values during tag computation and verification are leaked (i.e., mode-level leakage-resilience). Existing efficient proposals typically follow the plain Hash-then-MAC paradigm T = TGenK(H(M)). When the domain of the MAC function TGenK is {0, 1}128, e.g., when instantiated with the AES, forgery is possible within time 264 and data complexity 1. To dismiss such cheap attacks, we propose two modes: LRW1-based Hash-then-MAC (LRWHM) that is built upon the LRW1 tweakable blockcipher of Liskov, Rivest, and Wagner, and Rekeying Hash-then-MAC (RHM) that employs internal rekeying. Built upon secure AES implementations, LRWHM is provably secure up to (beyond-birthday) 278.3 time complexity, while RHM is provably secure up to 2121 time. Thus in practice, their main security threat is expected to be side-channel key recovery attacks against the AES implementations. Finally, we benchmark the performance of instances of our modes based on the AES and SHA3 and confirm their efficiency.
Efficient and Private Computations with Code-Based Masking
Code-based masking is a very general type of masking scheme that covers Boolean masking, inner product masking, direct sum masking, and so on. The merits of the generalization are twofold. Firstly, the higher algebraic complexity of the sharing function decreases the information leakage in “low noise conditions” and may increase the “statistical security order” of an implementation (with linear leakages). Secondly, the underlying error-correction codes can offer improved fault resistance for the encoded variables. Nevertheless, this higher algebraic complexity also implies additional challenges. On the one hand, a generic multiplication algorithm applicable to any linear code is still unknown. On the other hand, masking schemes with higher algebraic complexity usually come with implementation overheads, as for example witnessed by inner-product masking. In this paper, we contribute to these challenges in two directions. Firstly, we propose a generic algorithm that allows us (to the best of our knowledge for the first time) to compute on data shared with linear codes. Secondly, we introduce a new amortization technique that can significantly mitigate the implementation overheads of code-based masking, and illustrate this claim with a case study. Precisely, we show that, although performing every single code-based masked operation is relatively complex, processing multiple secrets in parallel leads to much better performances. This property enables code-based masked implementations of the AES to compete with the state-of-the-art in randomness complexity. Since our masked operations can be instantiated with various linear codes, we hope that these investigations open new avenues for the study of code-based masking schemes, by specializing the codes for improved performances, better side-channel security or improved fault tolerance.