International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Qidi You

Publications

Year
Venue
Title
2025
PKC
Thorough Power Analysis on Falcon Gaussian Samplers and Practical Countermeasure
Falcon is one of post-quantum signature schemes selected by NIST for standardization. With the deployment underway, its implementation security is of great importance. In this work, we focus on the side-channel security of Falcon and our contributions are threefold. First, by exploiting the symplecticity of NTRU and a recent decoding technique, we dramatically improve the key recovery using power leakages within Falcon Gaussian samplers. Compared to the state of the art (Zhang, Lin, Yu and Wang, EUROCRYPT 2023), the amount of traces required by our attack for a full key recovery is reduced by at least 85%. Secondly, we present a complete power analysis for two exposed power leakages within Falcon’s integer Gaussian sampler. We identify new sources of these leakages, which have not been identified by previous works, and conduct detailed security evaluations within the reference implementation of Falcon on Chipwhisperer. Thirdly, we propose effective and easy-to-implement countermeasures against both two leakages to protect the whole Falcon’s integer Gaussian sampler. Configured with our countermeasures, we provide security evaluations on Chipwhisperer and report performance of protected implementation. Experimental results highlight that our countermeasures admit a practical trade-off between effciency and side-channel security.
2021
TOSC
(Quantum) Collision Attacks on Reduced Simpira v2 📺
Simpira v2 is an AES-based permutation proposed by Gueron and Mouha at ASIACRYPT 2016. In this paper, we build an improved MILP model to count the differential and linear active Sboxes for Simpira v2, which achieves tighter bounds of the minimum number of active Sboxes for a few versions of Simpira v2. Then, based on the new model, we find some new truncated differentials for Simpira v2 and give a series (quantum) collision attacks on two versions of reduced Simpira v2.