International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Meiqin Wang

Publications

Year
Venue
Title
2022
EUROCRYPT
A Greater GIFT: Strengthening GIFT against Statistical Cryptanalysis 📺
GIFT-64 is a 64-bit block cipher with a 128-bit key that is more lightweight than PRESENT. This paper provides a detailed analysis of GIFT-64 against differential and linear attacks. Our work complements automatic search methods for the best differential and linear characteristics with a careful manual analysis. This hybrid approach leads to new insights. In the differential setting, we theoretically explain the existence of differential characteristics with two active S-boxes per round and derive some novel properties of these characteristics. Furthermore, we prove that all optimal differential characteristics of GIFT-64 covering more than seven rounds must activate two S-boxes per round. We can construct all optimal characteristics by hand. In parallel to the work in the differential setting, we conduct a similar analysis in the linear setting. However, unlike the clear view in differential setting, the optimal linear characteristics of GIFT-64 must have at least one round activating only one S-box. Moreover, with the assistance of automatic searching methods, we identify 24 GIFT-64 variants achieving better resistance against differential attack while maintaining a similar security level against a linear attack. Since the new variants strengthen GIFT-64 against statistical cryptanalysis, we claim that the number of rounds could be reduced from 28 to 26 for the variants. This observation enables us to create a cipher with lower energy consumption than GIFT-64. Similarly to the case in GIFT-64, we do not claim any related-key security for the round-reduced variant as this is not relevant for most applications.
2022
TOSC
Towards Low-Latency Implementation of Linear Layers 📺
Lightweight cryptography features a small footprint and/or low computational complexity. Low-cost implementations of linear layers usually play an important role in lightweight cryptography. Although it has been shown by Boyar et al. that finding the optimal implementation of a linear layer is a Shortest Linear Program (SLP) problem and NP-hard, there exist a variety of heuristic methods to search for near-optimal solutions. This paper considers the low-latency criteria and focuses on the heuristic search of lightweight implementation for linear layers. Most of the prior approach iteratively combines the inputs (of linear layers) to reach the output, which can be regarded as the forward search. To better adapt the low-latency criteria, we propose a new framework of backward search that attempts to iteratively split every output (into an XORing of two bits) until all inputs appear. By bounding the time of splitting, the new framework can find a sub-optimal solution with a minimized depth of circuits.We apply our new search algorithm to linear layers of block ciphers and find many low-latency candidates for implementations. Notably, for AES Mixcolumns, we provide an implementation with 103 XOR gates with a depth of 3, which is among the best hardware implementations of the AES linear layer. Besides, we obtain better implementations in XOR gates for 54.3% of 4256 Maximum Distance Separable (MDS) matrices proposed by Li et al. at FSE 2019. We also achieve an involutory MDS matrix (in M4(GL(8, F2))) whose implementation uses the lowest number (i.e., 86, saving 2 from the state-of-the-art result) of XORs with the minimum depth.
2022
TOSC
Addendum to Linear Cryptanalyses of Three AEADs with GIFT-128 as Underlying Primitives
Ling Sun Wei Wang Meiqin Wang
In ToSC 2021(2), Sun et al. implemented an automatic search with the Boolean satisfiability problem (SAT) method on GIFT-128 and identified a 19-round linear approximation with the expected linear potential being 2−117.43, which is utilised to launch a 24-round attack on the cipher. In this addendum, we discover a new 19-round linear approximation with a lower expected linear potential. However, in the attack, one more round can be appended after the distinguisher. As a result, we improve the previous optimal linear attack by one round and put forward a 25-round linear attack. Given that the optimal differential attack on GIFT-128, for now, covers 27-round, the resistances of the cipher against differential and linear attacks still have a 2-round gap.
2022
TOSC
Revisiting the Extension of Matsui’s Algorithm 1 to Linear Hulls: Application to TinyJAMBU
At EUROCRYPT ’93, Matsui introduced linear cryptanalysis. Both Matsui’s Algorithm 1 and 2 use a linear approximation involving certain state bits. Algorithm 2 requires partial encryptions or decryptions to obtain these state bits after guessing extra key bits. For ciphers where only part of the state can be obtained, like some stream ciphers and authenticated encryption schemes, Algorithm 2 will not work efficiently since it is hard to implement partial encryptions or decryptions. In this case, Algorithm 1 is a good choice since it only involves these state bits, and one bit of key information can be recovered using a single linear approximation trail. However, when there are several strong trails containing the same state bits, known as the linear hull effect, recovering key bits with Algorithm 1 is infeasible. To overcome this, Röck and Nyberg extended Matsui’s Algorithm 1 to linear hulls. However, Röck and Nyberg found that their theoretical estimates are quite pessimistic for low success probabilities and too optimistic for high success probabilities. To deal with this, we construct new statistical models where the theoretical success probabilities are in a good accordance with experimental ones, so that we provide the first accurate analysis of the extension of Matsui’s Algorithm 1 to linear hulls. To illustrate the usefulness of our new models, we apply them to one of the ten finalists of the NIST Lightweight Cryptography (LWC) Standardization project: TinyJAMBU. We provide the first cryptanalysis under the nonce-respecting setting on the full TinyJAMBU v1 and the round-reduced TinyJAMBU v2, where partial key bits are recovered. Our results do not violate the security claims made by the designers.
2022
TOSC
More Inputs Makes Difference: Implementations of Linear Layers Using Gates with More Than Two Inputs
Lightweight cryptography ensures cryptography applications to devices with limited resources. Low-area implementations of linear layers usually play an essential role in lightweight cryptography. The previous works have provided plenty of methods to generate low-area implementations using 2-input xor gates for various linear layers. However, it is still challenging to search for smaller implementations using two or more inputs xor gates. This paper, inspired by Banik et al., proposes a novel approach to construct a quantity of lower area implementations with (n + 1)- input gates based on the given implementations with n-input gates. Based on the novel algorithm, we present the corresponding search algorithms for n = 2 and n = 3, which means that we can efficiently convert an implementation with 2-input xor gates and 3-input xor gates to lower-area implementations with 3-input xor gates and 4-input xor gates, respectively.We improve the previous implementations of linear layers for many block ciphers according to the area with these search algorithms. For example, we achieve a better implementation with 4-input xor gates for AES MixColumns, which only requires 243 GE in the STM 130 nm library, while the previous public result is 258.9 GE. Besides, we obtain better implementations for all 5500 lightweight matrices proposed by Li et al. at FSE 2019, and the area for them is decreased by about 21% on average.
2021
TOSC
Accelerating the Search of Differential and Linear Characteristics with the SAT Method 📺
Ling Su Wei Wang Meiqin Wang
The introduction of the automatic search boosts the cryptanalysis of symmetric-key primitives to some degree. However, the performance of the automatic search is not always satisfactory for the search of long trails or ciphers with large state sizes. Compared with the extensive attention on the enhancement for the search with the mixed integer linear programming (MILP) method, few works care for the acceleration of the automatic search with the Boolean satisfiability problem (SAT) or satisfiability modulo theories (SMT) method. This paper intends to fill this vacancy. Firstly, with the additional encoding variables of the sequential counter circuit for the original objective function in the standard SAT method, we put forward a new encoding method to convert the Matsui’s bounding conditions into Boolean formulas. This approach does not rely on new auxiliary variables and significantly reduces the consumption of clauses for integrating multiple bounding conditions into one SAT problem. Then, we evaluate the accelerating effect of the novel encoding method under different sets of bounding conditions. With the observations and experience in the tests, a strategy on how to create the sets of bounding conditions that probably achieve extraordinary advances is proposed. The new idea is applied to search for optimal differential and linear characteristics for multiple ciphers. For PRESENT, GIFT-64, RECTANGLE, LBlock, TWINE, and some versions in SIMON and SPECK families of block ciphers, we obtain the complete bounds (full rounds) on the number of active S-boxes, the differential probability, as well as the linear bias. The acceleration method is also employed to speed up the search of related-key differential trails for GIFT-64. Based on the newly identified 18-round distinguisher with probability 2−58, we launch a 26-round key-recovery attack with 260.96 chosen plaintexts. To our knowledge, this is the longest attack on GIFT-64. Lastly, we note that the attack result is far from threatening the security of GIFT-64 since the designers recommended users to double the number of rounds under the related-key attack setting.
2021
TOSC
Linear Cryptanalyses of Three AEADs with GIFT-128 as Underlying Primitives 📺
Ling Sun Wei Wang Meiqin Wang
This paper considers the linear cryptanalyses of Authenticated Encryptions with Associated Data (AEADs) GIFT-COFB, SUNDAE-GIFT, and HyENA. All of these proposals take GIFT-128 as underlying primitives. The automatic search with the Boolean satisfiability problem (SAT) method is implemented to search for linear approximations that match the attack settings concerning these primitives. With the newly identified approximations, we launch key-recovery attacks on GIFT-COFB, SUNDAE-GIFT, and HyENA when the underlying primitives are replaced with 16-round, 17-round, and 16-round versions of GIFT-128. The resistance of GIFT-128 against linear cryptanalysis is also evaluated. We present a 24-round key-recovery attack on GIFT-128 with a newly obtained 19-round linear approximation. We note that the attack results in this paper are far from threatening the security of GIFT-COFB, SUNDAE-GIFT, HyENA, and GIFT-128.
2021
ASIACRYPT
Massive Superpoly Recovery with Nested Monomial Predictions 📺
Determining the exact algebraic structure or some partial information of the superpoly for a given cube is a necessary step in the cube attack -- a generic cryptanalytic technique for symmetric-key primitives with some secret and public tweakable inputs. Currently, the division property based approach is the most powerful tool for exact superpoly recovery. However, as the algebraic normal form (ANF) of the targeted output bit gets increasingly complicated as the number of rounds grows, existing methods for superpoly recovery quickly hit their bottlenecks. For example, previous method stuck at round 842, 190, and 892 for \trivium, \grain, and \kreyvium, respectively. In this paper, we propose a new framework for recovering the exact ANFs of massive superpolies based on the monomial prediction technique (ASIACRYPT 2020, an alternative language for the division property). In this framework, the targeted output bit is first expressed as a polynomial of the bits of some intermediate states. For each term appearing in the polynomial, the monomial prediction technique is applied to determine its superpoly if the corresponding MILP model can be solved within a preset time limit. Terms unresolved within the time limit are further expanded as polynomials of the bits of some deeper intermediate states with symbolic computation, whose terms are again processed with monomial predictions. The above procedure is iterated until all terms are resolved. Finally, all the sub-superpolies are collected and assembled into the superpoly of the targeted bit. We apply the new framework to \trivium, \grain, and \kreyvium. As a result, the exact ANFs of the superpolies for 843-, 844- and 845-round \trivium, 191-round \grain and 894-round \kreyvium are recovered. Moreover, with help of the M\"{o}bius transform, we present a novel key-recovery technique based on superpolies involving \textit{all} key bits by exploiting the sparse structures, which leads to the best key-recovery attacks on the targets considered.
2020
TOSC
Finding Bit-Based Division Property for Ciphers with Complex Linear Layers 📺
Kai Hu Qingju Wang Meiqin Wang
The bit-based division property (BDP) is the most effective technique for finding integral characteristics of symmetric ciphers. Recently, automatic search tools have become one of the most popular approaches to evaluating the security of designs against many attacks. Constraint-aided automatic tools for the BDP have been applied to many ciphers with simple linear layers like bit-permutation. Constructing models of complex linear layers accurately and efficiently remains hard. A straightforward method proposed by Sun et al. (called the S method), decomposes a complex linear layer into basic operations like COPY and XOR, then models them one by one. However, this method can easily insert invalid division trails into the solution pool, which results in a quicker loss of the balanced property than the cipher itself would. In order to solve this problem, Zhang and Rijmen propose the ZR method to link every valid trail with an invertible sub-matrix of the matrix corresponding to the linear layer, and then generate linear inequalities to represent all the invertible sub-matrices. Unfortunately, the ZR method is only applicable to invertible binary matrices (defined in Definition 3).To avoid generating a huge number of inequalities for all the sub-matrices, we build a new model that only includes that the sub-matrix corresponding to a valid trail should be invertible. The computing scale of our model can be tackled by most of SMT/SAT solvers, which makes our method practical. For applications, we improve the previous BDP for LED and MISTY1. We also give the 7-round BDP results for Camellia with FL/FL−1, which is the longest to date.Furthermore, we remove the restriction of the ZR method that the matrix has to be invertible, which provides more choices for future designs. Thanks to this, we also reproduce 5-round key-dependent integral distinguishers proposed at Crypto 2016 which cannot be obtained by either the S or ZR methods.
2020
TOSC
Beyond-Birthday-Bound Security for 4-round Linear Substitution-Permutation Networks 📺
Recent works of Cogliati et al. (CRYPTO 2018) have initiated provable treatments of Substitution-Permutation Networks (SPNs), one of the most popular approach to construct modern blockciphers. Such theoretical SPN models may employ non-linear diffusion layers, which enables beyond-birthday-bound provable security. Though, for the model of real world blockciphers, i.e., SPN models with linear diffusion layers, existing provable results are capped at birthday security up to $2^{n/2}$ adversarial queries, where $n$ is the size of the idealized S-boxes. In this paper, we overcome this birthday barrier and prove that a 4-round SPN with linear diffusion layers and independent round keys is secure up to $2^{2n/3}$ queries. For this, we identify conditions on the linear layers that are sufficient for such security, which, unsurprisingly, turns out to be slightly stronger than Cogliati et al.'s conditions for birthday security. These provides additional theoretic supports for real world SPN blockciphers.
2020
TOSC
Differential Attacks on CRAFT Exploiting the Involutory S-boxes and Tweak Additions 📺
CRAFT is a lightweight tweakable block cipher proposed at FSE 2019, which allows countermeasures against Differential Fault Attacks to be integrated into the cipher at the algorithmic level with ease. CRAFT employs a lightweight and involutory S-box and linear layer, such that the encryption function can be turned into decryption at a low cost. Besides, the tweakey schedule algorithm of CRAFT is extremely simple, where four 64-bit round tweakeys are generated and repeatedly used. Due to a combination of these features which makes CRAFT exceedingly lightweight, we find that some input difference at a particular position can be preserved through any number of rounds if the input pair follows certain truncated differential trails. Interestingly, in contrast to traditional differential analysis, the validity of this invariant property is affected by the positions where the constant additions take place. We use this property to construct “weak-tweakey” truncated differential distinguishers of CRAFT in the single-key model. Subsequently, we show how the tweak additions allow us to convert these weak-tweakey distinguishers into ordinary secret-key distinguishers based on which key-recovery attacks can be performed. Moreover, we show how to construct MILP models to search for truncated differential distinguishers exploiting this invariant property. As a result, we find a 15-round truncated differential distinguisher of CRAFT and extend it to a 19-round key-recovery attack with 260.99 data, 268 memory, 294.59 time complexity, and success probability 80.66%. Also, we find a 14-round distinguisher with probability 2−43 (experimentally verified), a 16-round distinguisher with probability 2−55, and a 20-round weak-key distinguisher (2118 weak keys) with probability 2−63. Experiments on round-reduced versions of the distinguishers show that the experimental probabilities are sometimes higher than predicted. Finally, we note that our result is far from threatening the security of the full CRAFT.
2020
TOSC
On the Usage of Deterministic (Related-Key) Truncated Differentials and Multidimensional Linear Approximations for SPN Ciphers 📺
Among the few works realising the search of truncated differentials (TD) and multidimensional linear approximations (MDLA) holding for sure, the optimality of the distinguisher should be confirmed via an exhaustive search over all possible input differences/masks, which cannot be afforded when the internal state of the primitive has a considerable number of words. The incomplete search is also a long-term problem in the search of optimal impossible differential (ID) and zerocorrelation linear approximation (ZCLA) since all available automatic tools operate under fixed input and output differences/masks, and testing all possible combinations of differences/masks is impracticable for now. In this paper, we start by introducing an automatic approach based on the constraint satisfaction problem for the exploration of deterministic TDs and MDLAs. Since we transform the exhaustive search into an inherent feature of the searching model, the issue of incomplete search is settled. This tool is applied to search for related-key (RK) TDs of AES-192, and a new related-key differential-linear (DL) distinguisher is identified with a TD with certainty. Due to the novel property of the distinguisher, the previous RK DL attack on AES-192 is improved. Also, the new distinguisher is explained from the viewpoint of differentiallinear connectivity table (DLCT) and thus can be regarded as the first application of DLCT in the related-key attack scenario. As the second application of the tool, we propose a method to construct (RK) IDs and ZCLAs automatically. Benefiting from the control of the nonzero fixed differential pattern and the inherent feature of exhaustive search, the new searching scheme can discover longer distinguishers and hence possesses some superiorities over the previous methods. This technique is implemented with several primitives, and the provable security bounds of SKINNY and Midori64 against impossible differential distinguishing attack are generalised.
2020
ASIACRYPT
An Algebraic Formulation of the Division Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent Sums 📺
Since it was proposed in 2015 as a generalization of integral properties, the division property has evolved into a powerful tool for probing the structures of Boolean functions whose algebraic normal forms are not available. We capture the most essential elements for the detection of division properties from a pure algebraic perspective, proposing a technique named as {\it monomial prediction}, which can be employed to determine the presence or absence of a monomial in the product of the coordinate functions of a vectorial Boolean function $\bs f$ by counting the number of the so-called {\it monomial trails} across a sequence of simpler functions whose composition is $\bs f$. Under the framework of the monomial prediction, we formally prove that most algorithms for detecting division properties in previous literature raise no false alarms but may miss. We also establish the equivalence between the monomial prediction and the three-subset bit-based division property without unknown subset presented at EUROCRYPT 2020, and show that these two techniques are perfectly accurate. This algebraic formulation gives more insights into division properties and inspires new search strategies. With the monomial prediction, we obtain the {\it exact} algebraic degrees of \TRIVIUM up to 834 rounds for the first time. In the context of cube attacks, we are able to explore a larger search space in limited time and recover the exact algebraic normal forms of complex superpolies with the help of a divide-and-conquer strategy. As a result, we identify more cubes with smaller dimensions, leading to improvements of some near-optimal attacks against 840-, 841- and 842-round \TRIVIUM.
2019
TOSC
Related-Tweak Statistical Saturation Cryptanalysis and Its Application on QARMA 📺
Muzhou Li Kai Hu Meiqin Wang
Statistical saturation attack takes advantage of a set of plaintext with some bits fixed while the others vary randomly, and then track the evolution of a non-uniform plaintext distribution through the cipher. Previous statistical saturation attacks are all implemented under single-key setting, and there is no public attack models under related-key/tweak setting. In this paper, we propose a new cryptanalytic method which can be seen as related-key/tweak statistical saturation attack by revealing the link between the related-key/tweak statistical saturation distinguishers and KDIB (Key Difference Invariant Bias) / TDIB (Tweak Difference Invariant Bias) ones. KDIB cryptanalysis was proposed by Bogdanov et al. at ASIACRYPT’13 and utilizes the property that there can exist linear trails such that their biases are deterministically invariant under key difference. And this method can be easily extended to TDIB distinguishers if the tweak is also alternated. The link between them provides a new and more efficient way to find related-key/tweak statistical saturation distinguishers in ciphers. Thereafter, an automatic searching algorithm for KDIB/TDIB distinguishers is also given in this paper, which can be implemented to find word-level KDIB distinguishers for S-box based key-alternating ciphers. We apply this algorithm to QARMA-64 and give related-tweak statistical saturation attack for 10-round QARMA-64 with outer whitening key. Besides, an 11-round attack on QARMA-128 is also given based on the TDIB technique. Compared with previous public attacks on QARMA including outer whitening key, all attacks presented in this paper are the best ones in terms of the number of rounds.
2018
TOSC
Cryptanalysis of AES-PRF and Its Dual 📺
A dedicated pseudorandom function (PRF) called AES-PRF was proposed by Mennink and Neves at FSE 2018 (ToSC 2017, Issue 3). AES-PRF is obtained from AES by using the output of the 5-th round as the feed-forward to the output state. This paper presents extensive security analysis of AES-PRF and its variants. Specifically, we consider unbalanced variants where the output of the s-th round is used as the feed-forward. We also analyze the security of “dual” constructions of the unbalanced variants, where the input state is used as the feed-forward to the output of the s-th round. We apply an impossible differential attack, zero-correlation linear attack, traditional differential attack, zero correlation linear distinguishing attack and a meet-in-the-middle attack on these PRFs and reduced round versions. We show that AES-PRF is broken whenever s ≤ 2 or s ≥ 6, or reduced to 7 rounds, and Dual-AES-PRF is broken whenever s ≤ 4 or s ≥ 8. Our results on AES-PRF improve the initial security evaluation by the designers in various ways, and our results on Dual-AES-PRF give the first insight to its security.
2018
TOSC
More Accurate Differential Properties of LED64 and Midori64 📺
Ling Sun Wei Wang Meiqin Wang
In differential cryptanalysis, a differential is more valuable than the single trail belonging to it in general. The traditional way to compute the probability of the differential is to sum the probabilities of all trails within it. The automatic tool for the search of differentials based on Mixed Integer Linear Programming (MILP) has been proposed and realises the task of finding multiple trails of a given differential. The problem is whether it is reliable to evaluate the probability of the differential traditionally. In this paper, we focus on two lightweight block ciphers – LED64 and Midori64 and show the more accurate estimation of differential probability considering the key schedule. Firstly, an automated tool based on Boolean Satisfiability Problem (SAT) is put forward to accomplish the automatic search of differentials for ciphers with S-boxes and is applied to LED64 and Midori64. Secondly, we provide an automatic approach to detect the right pairs following a given differential, which can be exploited to calculate the differential property. Applying this technique to the STEP function of LED64, we discover some differentials with enhanced probability. As a result, the previous attacks relying upon high probability differentials can be improved definitely. Thirdly, we present a method to compute an upper-bound of the weak-key ratio for a given differential, which is utilised to analyse 4-round differentials of Midori64. We detect two differentials whose weak-key ratios are much lower than the expected 50%. More than 78% of the keys will make these two differentials being impossible differentials. The idea of the estimation for an upper-bound of the weak-key ratio can be employed for other ciphers and allows us to launch differential attacks more reliably. Finally, we introduce how to compute the enhanced differential probability and evaluate the size of keys achieving the improved probability. Such a property may incur an efficient weak-key attack. For a 4-round differential of Midori64, we obtain an improved differential property for a portion of keys.
2017
EUROCRYPT
2017
ASIACRYPT
2016
FSE
2016
FSE
2014
FSE
2013
ASIACRYPT
2012
ASIACRYPT
2012
FSE
2012
FSE
2009
FSE

Program Committees

Asiacrypt 2021
FSE 2018
FSE 2017
Asiacrypt 2017
FSE 2016
Asiacrypt 2016
Asiacrypt 2014