International Association for Cryptologic Research

International Association
for Cryptologic Research


Lin Lyu

Affiliation: Shanghai Jiao Tong University


More Efficient Digital Signatures with Tight Multi-User Security 📺
We construct the currently most efficient signature schemes with tight multi-user security against adaptive corruptions. It is the first generic construction of such schemes, based on lossy identification schemes (Abdalla etal; JoC 2016), and the first to achieve strong existential unforgeability. It also has significantly more compact signatures than the previously most efficient construction by Gjosteen and Jager (CRYPTO 2018). When instantiated based on the decisional Diffie-Hellman assumption, a signature consists of only three exponents. We propose a new variant of the generic construction of signatures from sequential OR-proofs by Abe, Ohkubo, and Suzuki (ASIACRYPT 2002) and Fischlin, Harasser, and Janson (EUROCRYPT 2020). In comparison to Fischlin etal, who focus on constructing signatures in the non-programmable random oracle model (NPROM), we aim to achieve tight security against adaptive corruptions, maximize efficiency, and to directly achieve strong existential unforgeability (also in the NPROM). This yields a slightly different construction and we use slightly different and additional properties of the lossy identification scheme. Signatures with tight multi-user security against adaptive corruptions are a commonly-used standard building block for tightly-secure authenticated key exchange protocols. We also show how our construction improves the efficiency of all existing tightly-secure AKE protocols.
Tight Leakage-Resilient CCA-Security from Quasi-Adaptive Hash Proof System 📺
We propose the concept of quasi-adaptive hash proof system (QAHPS), where the projection key is allowed to depend on the specific language for which hash values are computed. We formalize leakage-resilient(LR)-ardency for QAHPS by defining two statistical properties, including LR-$$\langle \mathscr {L}_0, \mathscr {L}_1 \rangle $$-universal and LR-$$\langle \mathscr {L}_0, \mathscr {L}_1 \rangle $$-key-switching.We provide a generic approach to tightly leakage-resilient CCA (LR-CCA) secure public-key encryption (PKE) from LR-ardent QAHPS. Our approach is reminiscent of the seminal work of Cramer and Shoup (Eurocrypt’02), and employ three QAHPS schemes, one for generating a uniform string to hide the plaintext, and the other two for proving the well-formedness of the ciphertext. The LR-ardency of QAHPS makes possible the tight LR-CCA security. We give instantiations based on the standard k-Linear (k-LIN) assumptions over asymmetric and symmetric pairing groups, respectively, and obtain fully compact PKE with tight LR-CCA security. The security loss is $${{O}}(\log {Q_{{e}}})$$ where $${Q_{{e}}}$$ denotes the number of encryption queries. Specifically, our tightly LR-CCA secure PKE instantiation from SXDH has only 4 group elements in the public key and 7 group elements in the ciphertext, thus is the most efficient one.
Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions
Selective opening security (SO security) is desirable for public key encryption (PKE) in a multi-user setting. In a selective opening attack, an adversary receives a number of ciphertexts for possibly correlated messages, then it opens a subset of them and gets the corresponding messages together with the randomnesses used in the encryptions. SO security aims at providing security for the unopened ciphertexts. Among the existing simulation-based, selective opening, chosen ciphertext secure (SIM-SO-CCA secure) PKEs, only one (Libert et al. Crypto’17) enjoys tight security, which is reduced to the Non-Uniform LWE assumption. However, their public key and ciphertext are not compact.In this work, we focus on constructing PKE with tight SIM-SO-CCA security based on standard assumptions. We formalize security notions needed for key encapsulation mechanism (KEM) and show how to transform these securities into SIM-SO-CCA security of PKE through a tight security reduction, while the construction of PKE from KEM follows the general framework proposed by Liu and Paterson (PKC’15). We present two KEM constructions with tight securities based on the Matrix Decision Diffie-Hellman assumption. These KEMs in turn lead to two tightly SIM-SO-CCA secure PKE schemes. One of them enjoys not only tight security but also compact public key.