## CryptoDB

### Gorjan Alagic

#### Publications

**Year**

**Venue**

**Title**

2022

EUROCRYPT

Post-Quantum Security of the Even-Mansour Cipher
📺
Abstract

The Even-Mansour cipher is a simple method for constructing a (keyed) pseudorandom permutation $E$ from a public random permutation~$P:\bool^n \rightarrow \bool^n$. It is a core ingredient in a wide array of symmetric-key constructions, including several lightweight cryptosystems presently under consideration for standardization by NIST. It is secure against classical attacks, with optimal attacks requiring $q_E$ queries to $E$ and $q_P$ queries to $P$ such that $q_P \cdot q_E \approx 2^n$. If the attacker is given \emph{quantum} access to both $E$ and $P$, however, the cipher is completely insecure, with attacks using $q_P = q_E = O(n)$ queries known.
In any plausible real-world setting, however, a quantum attacker would have only \emph{classical} access to the keyed permutation $E$ implemented by honest parties, while retaining quantum access to $P$. Attacks in this setting with $q_P^2 \cdot q_E \approx 2^n$ are known, showing that security degrades as compared to the purely classical case, but leaving open the question as to whether the Even-Mansour cipher can still be proven secure in this natural ``post-quantum'' setting.
We resolve this open question, showing that any attack in this post-quantum setting requires $q^2_P \cdot q_E + q_P \cdot q_E^2 \approx 2^n$. Our results apply to both the two-key and single-key variants of Even-Mansour. Along the way, we establish several generalizations of results from prior work on quantum-query lower bounds that may be of independent interest.

2021

CRYPTO

Impossibility of Quantum Virtual Black-Box Obfuscation of Classical Circuits
📺
Abstract

Virtual black-box obfuscation is a strong cryptographic primitive: it encrypts a circuit while maintaining its full input/output functionality. A remarkable result by Barak et al. (Crypto 2001) shows that a general obfuscator that obfuscates classical circuits into classical circuits cannot exist. A promising direction that circumvents this impossibility result is to obfuscate classical circuits into quantum states, which would potentially be better capable of hiding information about the obfuscated circuit. We show that, under the assumption that Learning With Errors (LWE) is hard for quantum computers, this quantum variant of virtual black-box obfuscation of classical circuits is generally impossible. On the way, we show that under the presence of dependent classical auxiliary input, even the small class of classical point functions cannot be quantum virtual black-box obfuscated.

2020

EUROCRYPT

Efficient simulation of random states and random unitaries
📺
Abstract

We consider the problem of efficiently simulating random quantum states and random unitary operators, in a manner which is convincing to unbounded adversaries with black-box oracle access.
This problem has previously only been considered for restricted adversaries. Against adversaries with an a priori bound on the number of queries, it is well-known that t-designs suffice. Against polynomial-time adversaries, one can use pseudorandom states (PRS) and pseudorandom unitaries (PRU), as defined in a recent work of Ji, Liu, and Song; unfortunately, no provably secure construction is known for PRUs.
In our setting, we are concerned with unbounded adversaries. Nonetheless, we are able to give stateful quantum algorithms which simulate the ideal object in both settings of interest. In the case of Haar-random states, our simulator is polynomial-time, has negligible error, and can also simulate verification and reflection through the simulated state. This yields an immediate application to quantum money: a money scheme which is information-theoretically unforgeable and untraceable. In the case of Haar-random unitaries, our simulator takes polynomial space, but simulates both forward and inverse access with zero error.
These results can be seen as the first significant steps in developing a theory of lazy sampling for random quantum objects.

2020

EUROCRYPT

Quantum-access-secure message authentication via blind-unforgeability
📺
Abstract

Formulating and designing authentication of classical messages in the presence of adversaries with quantum query access has been a challenge, as the familiar classical notions of unforgeability do not directly translate into meaningful notions in the quantum setting. A particular difficulty is how to fairly capture the notion of ``predicting an unqueried value'' when the adversary can query in quantum superposition.
We propose a natural definition of unforgeability against quantum adversaries called blind unforgeability. This notion defines a function to be predictable if there exists an adversary who can use "partially blinded" oracle access to predict values in the blinded region. We support the proposal with a number of technical results. We begin by establishing that the notion coincides with EUF-CMA in the classical setting and go on to demonstrate that the notion is satisfied by a number of simple guiding examples, such as random functions and quantum-query-secure pseudorandom functions. We then show the suitability of blind unforgeability for supporting canonical constructions and reductions. We prove that the "hash-and-MAC" paradigm and the Lamport one-time digital signature scheme are indeed unforgeable according to the definition. In this setting, we additionally define and study a new variety of quantum-secure hash functions called Bernoulli-preserving.
Finally, we demonstrate that blind unforgeability is strictly stronger than a previous definition of Boneh and Zhandry [EUROCRYPT '13, CRYPTO '13] and resolve an open problem concerning this previous definition by constructing an explicit function family which is forgeable yet satisfies the definition.

2020

TCC

Non-interactive classical verification of quantum computation
📺
Abstract

In a recent breakthrough, Mahadev constructed an interactive protocol that enables a purely classical party to delegate any quantum computation to an untrusted quantum prover. We show that this same task can in fact be performed non-interactively (with setup) and in zero-knowledge.
Our protocols result from a sequence of significant improvements to the original four-message protocol of Mahadev. We begin by making the first message instance-independent and moving it to an offline setup phase. We then establish a parallel repetition theorem for the resulting three-message protocol, with an asymptotically optimal rate. This, in turn, enables an application of the Fiat-Shamir heuristic, eliminating the second message and giving a non-interactive protocol. Finally, we employ classical non-interactive zero-knowledge (NIZK) arguments and classical fully homomorphic encryption (FHE) to give a zero-knowledge variant of this construction. This yields the first purely classical NIZK argument system for QMA, a quantum analogue of NP.
We establish the security of our protocols under standard assumptions in quantum-secure cryptography. Specifically, our protocols are secure in the Quantum Random Oracle Model, under the assumption that Learning with Errors is quantumly hard. The NIZK construction also requires circuit-private FHE.

#### Program Committees

- PKC 2020
- Asiacrypt 2020
- Asiacrypt 2019

#### Coauthors

- Chen Bai (1)
- Zvika Brakerski (1)
- Andrew M. Childs (1)
- Yfke Dulek (2)
- Tommaso Gagliardoni (1)
- Alex B. Grilo (1)
- Shih-Han Hung (1)
- Jonathan Katz (1)
- Christian Majenz (5)
- Alexander Russell (3)
- Christian Schaffner (2)
- Fang Song (1)
- Florian Speelman (1)