International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Chen Bai

Publications

Year
Venue
Title
2024
EUROCRYPT
Post-Quantum security of Tweakable Even-Mansour, and Applications
The tweakable Even-Mansour construction yields a tweakable block cipher from a public random permutation. We prove post-quantum security of tweakable Even-Mansour, where attackers have quantum access to the public random permutation but only classical access to the secretly-keyed construction, a setting that seems to be the most relevant one for real-world applications. We then use our results to prove post-quantum security---in the same model---of three symmetric-key schemes: Elephant (an AEAD finalist of NIST's lightweight cryptography standardization effort), Minalpher (a second-round AEAD candidate of the CAESAR competition), and Chaskey (an ISO-standardized MAC).
2024
CIC
On the Two-sided Permutation Inversion Problem
<p> In the permutation inversion problem, the task is to find the preimage of some challenge value, given oracle access to the permutation. This fundamental problem in query complexity appears in many contexts, particularly cryptography. In this work, we examine the setting in which the oracle allows for quantum queries to both the forward and the inverse direction of the permutation—except that the challenge value cannot be submitted to the latter. Within that setting, we consider three options for the inversion algorithm: whether it can get quantum advice about the permutation, whether the query algorithm can restrict the distribution with which the challenge input is sampled, and whether it must produce the entire preimage (search) or only the first bit (decision). We prove several theorems connecting the hardness of the resulting variations of the permutation inversion problem and establish lower bounds for them. Our results show that, perhaps surprisingly, the permutation inversion problem does not become significantly easier when the adversary is granted oracle access to the inverse—provided it cannot query the challenge itself. </p>
2022
EUROCRYPT
Post-Quantum Security of the Even-Mansour Cipher 📺
The Even-Mansour cipher is a simple method for constructing a (keyed) pseudorandom permutation $E$ from a public random permutation~$P:\bool^n \rightarrow \bool^n$. It is a core ingredient in a wide array of symmetric-key constructions, including several lightweight cryptosystems presently under consideration for standardization by NIST. It is secure against classical attacks, with optimal attacks requiring $q_E$ queries to $E$ and $q_P$ queries to $P$ such that $q_P \cdot q_E \approx 2^n$. If the attacker is given \emph{quantum} access to both $E$ and $P$, however, the cipher is completely insecure, with attacks using $q_P = q_E = O(n)$ queries known. In any plausible real-world setting, however, a quantum attacker would have only \emph{classical} access to the keyed permutation $E$ implemented by honest parties, while retaining quantum access to $P$. Attacks in this setting with $q_P^2 \cdot q_E \approx 2^n$ are known, showing that security degrades as compared to the purely classical case, but leaving open the question as to whether the Even-Mansour cipher can still be proven secure in this natural ``post-quantum'' setting. We resolve this open question, showing that any attack in this post-quantum setting requires $q^2_P \cdot q_E + q_P \cdot q_E^2 \approx 2^n$. Our results apply to both the two-key and single-key variants of Even-Mansour. Along the way, we establish several generalizations of results from prior work on quantum-query lower bounds that may be of independent interest.