International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Patrick Struck

Publications

Year
Venue
Title
2024
EUROCRYPT
Post-Quantum security of Tweakable Even-Mansour, and Applications
The tweakable Even-Mansour construction yields a tweakable block cipher from a public random permutation. We prove post-quantum security of tweakable Even-Mansour, where attackers have quantum access to the public random permutation but only classical access to the secretly-keyed construction, a setting that seems to be the most relevant one for real-world applications. We then use our results to prove post-quantum security---in the same model---of three symmetric-key schemes: Elephant (an AEAD finalist of NIST's lightweight cryptography standardization effort), Minalpher (a second-round AEAD candidate of the CAESAR competition), and Chaskey (an ISO-standardized MAC).
2024
TOSC
Constructing Committing and Leakage-Resilient Authenticated Encryption
Patrick Struck Maximiliane Weishäupl
The main goal of this work is to construct authenticated encryption (AE) hat is both committing and leakage-resilient. As a first approach for this we consider generic composition as a well-known method for constructing AE schemes. While the leakage resilience of generic composition schemes has already been analyzed by Barwell et al. (Asiacrypt’17), for committing security this is not the case. We fill this gap by providing a separate analysis of the generic composition paradigms with respect to committing security, giving both positive and negative results: By means of a concrete attack, we show that Encrypt-then-MAC is not committing. Furthermore, we prove that Encrypt-and-MAC is committing, given that the underlying schemes satisfy security notions we introduce for this purpose. We later prove these new notions achievable by providing schemes that satisfy them. MAC-then-Encrypt turns out to be more difficult due to the fact that the tag is not outputted alongside the ciphertext as it is done for the other two composition methods. Nevertheless, we give a detailed heuristic analysis of MAC-then-Encrypt with respect to committing security, leaving a definite result as an open task for future work. Our results, in combination with the fact that only Encrypt-then-MAC yields leakage-resilient AE schemes, show that one cannot obtain AE schemes that are both committing and leakage-resilient via generic composition. As a second approach for constructing committing and leakage-resilient AE, we develop a generic transformation that turns an arbitrary AE scheme into one that fulfills both properties. The transformation relies on a keyed function that is both binding, i.e., it is hard to find key-input pairs that result in the same output, and leakage-resilient pseudorandom.
2024
CRYPTO
On the (In)Security of the BUFF Transform
The BUFF transform is a generic transformation for digital signature schemes, with the purpose of obtaining additional security properties beyond standard unforgeability, e.g., exclusive ownership and non-resignability. In the call for additional post-quantum signatures, these were explicitly mentioned by the NIST as ``additional desirable security properties'', and some of the submissions indeed refer to the BUFF transform with the purpose of achieving them, while some other submissions follow the design of the BUFF transform without mentioning it explicitly. In this work, we show the following negative results regarding the non-resignability property in general, and the BUFF transform in particular. In the plain model, we observe by means of a simple attack that any signature scheme for which the message has a high entropy given the signature does not satisfy the non-resignability property (while non-resignability is trivially not satisfied if the message can be efficiently computed from its signature). Given that the BUFF transform has high entropy in the message given the signature, it follows that the BUFF transform does not achieve non-resignability whenever the random oracle is instantiated with a hash function, no matter what hash function. When considering the random oracle model (ROM), the matter becomes slightly more delicate since prior works did not rigorously define the non-resignability property in the ROM. For the natural extension of the definition to the ROM, we observe that our impossibility result still holds, despite there having been positive claims about the non-resignability of the BUFF transform in the ROM. Indeed, prior claims of the non-resignability of the BUFF transform rely on faulty argumentation. On the positive side, we prove that a salted version of the BUFF transform satisfies a slightly weaker variant of non-resignability in the ROM, covering both classical and quantum attacks, if the entropy requirement in the (weakened) definition of non-resignability is statistical; for the computational variant, we show yet another negative result.
2024
TCC
Hide-and-Seek and the Non-Resignability of the BUFF Transform
The BUFF transform, due to Cremers et al. (S&P'21), is a generic transformation for digital signature scheme, with the purpose of obtaining additional security guarantees beyond unforgeability: exclusive ownership, message-bound signatures, and non-resignability. Non-resignability (which essentially challenges an adversary to re-sign an unknown message for which it only obtains the signature) turned out to be a delicate matter, as recently Don et al. (CRYPTO'24) showed that the initial definition is essentially unachieveable; in particular, it is not achieved by the BUFF transfom. This led to the introduction of new, weakened versions of non-resignability, which are (potentially) achievable. In particular, it was shown that a salted variant of the BUFF transform does achieves some weakened version of non-resignability. However, the salting requires additional randomness and leads to slightly larger signatures. Whether the original BUFF transform also achieves some meaningful notion of non-resignability remained a natural open question. In this work, we answer this question in the affirmative. We show that the BUFF transform satisfies the (almost) strongest notions of non-resignability one can hope for, facing the known impossibility results. Our results cover both the statistical and the computational case, and both the classical and the quantum setting. At the core of our analysis lies a new security game for random oracles that we call Hide-and-Seek. While seemingly innocent at first glance, it turns out to be surprisingly challenging to rigorously analyze.
2023
PKC
A Lightweight Identification Protocol Based on Lattices
In this work we present a lightweight lattice-based identification protocol based on the CPA-secured public key encryption scheme Kyber. It is designed as a replacement for existing classical ECC- or RSA-based identification protocols in IoT, smart card applications, or for device authentication. The proposed protocol is simple, efficient, and implementations are supposed to be easy to harden against side-channel attacks. Compared to standard constructions for identification protocols based on lattice-based KEMs, our construction achieves this by avoiding the Fujisaki-Okamoto transform and its impact on implementation security. Moreover, contrary to prior lattice-based identification protocols or standard constructions using signatures, our work does not require rejection sampling and can use more efficient parameters than signature schemes. We provide a generic construction from CPA-secured public key encryption schemes to identification protocols and give a security proof of the protocol in the ROM. Moreover, we instantiate the generic construction with Kyber, for which we use the proposed parameter sets for NIST security levels I, III, and V. To show that the protocol is suitable for constrained devices, we implemented one selected parameter set on an ARM Cortex-M4 microcontroller. As the protocol is based on existing algorithms for Kyber, we make use of existing SW components (e.g., fast NTT implementations) for our implementation.
2019
ASIACRYPT
Sponges Resist Leakage: The Case of Authenticated Encryption
In this work we advance the study of leakage-resilient Authenticated Encryption with Associated Data (AEAD) and lay the theoretical groundwork for building such schemes from sponges. Building on the work of Barwell et al. (ASIACRYPT 2017), we reduce the problem of constructing leakage-resilient AEAD schemes to that of building fixed-input-length function families that retain pseudorandomness and unpredictability in the presence of leakage. Notably, neither property is implied by the other in the leakage-resilient setting. We then show that such a function family can be combined with standard primitives, namely a pseudorandom generator and a collision-resistant hash, to yield a nonce-based AEAD scheme. In addition, our construction is quite efficient in that it requires only two calls to this leakage-resilient function per encryption or decryption call. This construction can be instantiated entirely from the T-sponge to yield a concrete AEAD scheme which we call $${ \textsc {Slae}}$$. We prove this sponge-based instantiation secure in the non-adaptive leakage setting. $${ \textsc {Slae}}$$ bears many similarities and is indeed inspired by $${ \textsc {Isap}}$$, which was proposed by Dobraunig et al. at FSE 2017. However, while retaining most of the practical advantages of $${ \textsc {Isap}}$$, $${ \textsc {Slae}}$$ additionally benefits from a formal security treatment.