International Association for Cryptologic Research

International Association
for Cryptologic Research


David Gerault


Boosting Differential-Linear Cryptanalysis of ChaCha7 with MILP
In this paper, we present an improved differential-linear cryptanalysis of the ChaCha stream cipher. Our main contributions are new differential-linear distinguishers that we were able to build thanks to the following improvements: a) we considered a larger search space, including 2-bit differences (besides 1-bit differences) for the difference at the beginning of the differential part of the differential-linear trail; b) a better choice of mask between the differential and linear parts; c) a carefully crafted MILP tool that finds linear trails with higher correlation for the linear part. We eventually obtain a new distinguisher for ChaCha reduced to 7 rounds that requires 2166.89 computations, improving the previous record (ASIACRYPT 2022) by a factor of 247. Also, we obtain a distinguisher for ChaCha reduced to 7.5 rounds that requires 2251.4 computations, being the first time of a distinguisher against ChaCha reduced to 7.5 rounds. Using our MILP tool, we also found a 5-round differential-linear distinguisher. When combined with the probabilistic neutral bits (PNB) framework, we obtain a key-recovery attack on ChaCha reduced to 7 rounds with a computational complexity of 2206.8, improving by a factor 214.2 upon the recent result published at EUROCRYPT 2022.
A Cipher-Agnostic Neural Training Pipeline with Automated Finding of Good Input Differences
Neural cryptanalysis is the study of cryptographic primitives through machine learning techniques. Following Gohr’s seminal paper at CRYPTO 2019, a focus has been placed on improving the accuracy of such distinguishers against specific primitives, using dedicated training schemes, in order to obtain better key recovery attacks based on machine learning. These distinguishers are highly specialized and not trivially applicable to other primitives. In this paper, we focus on the opposite problem: building a generic pipeline for neural cryptanalysis. Our tool is composed of two parts. The first part is an evolutionary algorithm for the search of good input differences for neural distinguishers. The second part is DBitNet, a neural distinguisher architecture agnostic to the structure of the cipher. We show that this fully automated pipeline is competitive with a highly specialized approach, in particular for SPECK32, and SIMON32. We provide new neural distinguishers for several primitives (XTEA, LEA, HIGHT, SIMON128, SPECK128) and improve over the state-of-the-art for PRESENT, KATAN, TEA and GIMLI.
A Deeper Look at Machine Learning-Based Cryptanalysis 📺
At CRYPTO’19, Gohr proposed a new cryptanalysis strategy based on the utilisation of machine learning algorithms. Using deep neural networks, he managed to build a neural based distinguisher that surprisingly surpassed state-of-the-art cryptanalysis efforts on one of the versions of the well studied NSA block cipher SPECK (this distinguisher could in turn be placed in a larger key recovery attack). While this work opens new possibilities for machine learning-aided cryptanalysis, it remains unclear how this distinguisher actually works and what information is the machine learning algorithm deducing. The attacker is left with a black-box that does not tell much about the nature of the possible weaknesses of the algorithm tested, while hope is thin as interpretability of deep neural networks is a well-known difficult task. In this article, we propose a detailed analysis and thorough explanations of the inherent workings of this new neural distinguisher. First, we studied the classified sets and tried to find some patterns that could guide us to better understand Gohr’s results. We show with experiments that the neural distinguisher generally relies on the differential distribution on the ciphertext pairs, but also on the differential distribution in penultimate and antepenultimate rounds. In order to validate our findings, we construct a distinguisher for SPECK cipher based on pure cryptanalysis, without using any neural network, that achieves basically the same accuracy as Gohr’s neural distinguisher and with the same efficiency (therefore improving over previous non-neural based distinguishers). Moreover, as another approach, we provide a machine learning-based distinguisher that strips down Gohr’s deep neural network to a bare minimum. We are able to remain very close to Gohr’s distinguishers’ accuracy using simple standard machine learning tools. In particular, we show that Gohr’s neural distinguisher is in fact inherently building a very good approximation of the Differential Distribution Table (DDT) of the cipher during the learning phase, and using that information to directly classify ciphertext pairs. This result allows a full interpretability of the distinguisher and represents on its own an interesting contribution towards interpretability of deep neural networks. Finally, we propose some method to improve over Gohr’s work and possible new neural distinguishers settings. All our results are confirmed with experiments we have conducted on SPECK block cipher.
Exploring Differential-Based Distinguishers and Forgeries for ASCON 📺
Automated methods have become crucial components when searching for distinguishers against symmetric-key cryptographic primitives. While MILP and SAT solvers are among the most popular tools to model ciphers and perform cryptanalysis, other methods with different performance profiles are appearing. In this article, we explore the use of Constraint Programming (CP) for differential cryptanalysis on the Ascon authenticated encryption family (first choice of the CAESAR lightweight applications portfolio and current finalist of the NIST LWC competition) and its internal permutation. We first present a search methodology for finding differential characteristics for Ascon with CP, which can easily find the best differential characteristics already reported by the Ascon designers. This shows the capability of CP in generating easily good differential results compared to dedicated search heuristics. Based on our tool, we also parametrize the search strategies in CP to generate other differential characteristics with the goal of forming limited-birthday distinguishers for 4, 5, 6 and 7 rounds and rectangle attacks for 4 and 5 rounds of the Ascon internal permutation. We propose a categorization of the distinguishers into black-box and non-black-box to better differentiate them as they are often useful in different contexts. We also obtained limited-birthday distinguishers which represent currently the best known distinguishers for 4, 5 and 6 rounds under the category of non-black-box distinguishers. Leveraging again our tool, we have generated forgery attacks against both reduced-rounds Ascon-128 and Ascon-128a, improving over the best reported results at the time of writing. Finally, using the best differential characteristic we have found for 2 rounds, we could also improve a recent attack on round-reduced Ascon-Hash.
On the Usage of Deterministic (Related-Key) Truncated Differentials and Multidimensional Linear Approximations for SPN Ciphers 📺
Ling Sun David Gerault Wei Wang Meiqin Wang
Among the few works realising the search of truncated differentials (TD) and multidimensional linear approximations (MDLA) holding for sure, the optimality of the distinguisher should be confirmed via an exhaustive search over all possible input differences/masks, which cannot be afforded when the internal state of the primitive has a considerable number of words. The incomplete search is also a long-term problem in the search of optimal impossible differential (ID) and zerocorrelation linear approximation (ZCLA) since all available automatic tools operate under fixed input and output differences/masks, and testing all possible combinations of differences/masks is impracticable for now. In this paper, we start by introducing an automatic approach based on the constraint satisfaction problem for the exploration of deterministic TDs and MDLAs. Since we transform the exhaustive search into an inherent feature of the searching model, the issue of incomplete search is settled. This tool is applied to search for related-key (RK) TDs of AES-192, and a new related-key differential-linear (DL) distinguisher is identified with a TD with certainty. Due to the novel property of the distinguisher, the previous RK DL attack on AES-192 is improved. Also, the new distinguisher is explained from the viewpoint of differentiallinear connectivity table (DLCT) and thus can be regarded as the first application of DLCT in the related-key attack scenario. As the second application of the tool, we propose a method to construct (RK) IDs and ZCLAs automatically. Benefiting from the control of the nonzero fixed differential pattern and the inherent feature of exhaustive search, the new searching scheme can discover longer distinguishers and hence possesses some superiorities over the previous methods. This technique is implemented with several primitives, and the provable security bounds of SKINNY and Midori64 against impossible differential distinguishing attack are generalised.
Analysis of AES, SKINNY, and Others with Constraint Programming
Search for different types of distinguishers are common tasks in symmetrickey cryptanalysis. In this work, we employ the constraint programming (CP) technique to tackle such problems. First, we show that a simple application of the CP approach proposed by Gerault et al. leads to the solution of the open problem of determining the exact lower bound of the number of active S-boxes for 6-round AES-128 in the related-key model. Subsequently, we show that the same approach can be applied in searching for integral distinguishers, impossible differentials, zero-correlation linear approximations, in both the single-key and related-(twea)key model. We implement the method using the open source constraint solver Choco and apply it to the block ciphers PRESENT, SKINNY, and HIGHT (ARX construction). As a result, we find 16 related-tweakey impossible differentials for 12-round SKINNY-64-128 based on which we construct an 18-round attack on SKINNY-64-128 (one target version for the crypto competition announced at ASK 2016). Moreover, we show that in some cases, when equipped with proper strategies (ordering heuristic, restart and dynamic branching strategy), the CP approach can be very efficient. Therefore, we suggest that the constraint programming technique should become a convenient tool at hand of the symmetric-key cryptanalysts.