International Association for Cryptologic Research

International Association
for Cryptologic Research


Andrea Coladangelo


Non-Interactive Zero-Knowledge Arguments for QMA, with preprocessing 📺
Andrea W. Coladangelo Thomas G. Vidick Tina Zhang
We initiate the study of non-interactive zero-knowledge (NIZK) arguments for languages in QMA. Our first main result is the following: if Learning With Errors (LWE) is hard for quantum computers, then any language in QMA has an NIZK argument with preprocessing. The preprocessing in our argument system consists of (i) the generation of a CRS and (ii) a single (instance-independent) quantum message from verifier to prover. The instance-dependent phase of our argument system involves only a single classical message from prover to verifier. Importantly, verification in our protocol is entirely classical, and the verifier needs not have quantum memory; its only quantum actions are in the preprocessing phase. Our second contribution is to extend the notion of a classical proof of knowledge to the quantum setting. We introduce the notions of arguments and proofs of quantum knowledge (AoQK/PoQK), and we show that our non-interactive argument system satisfies the definition of an AoQK. In particular, we explicitly construct an extractor which can recover a quantum witness from any prover which is successful in our protocol. Finally, we show that any language in QMA has an (interactive) proof of quantum knowledge.
Verifier-on-a-Leash: New Schemes for Verifiable Delegated Quantum Computation, with Quasilinear Resources 📺
The problem of reliably certifying the outcome of a computation performed by a quantum device is rapidly gaining relevance. We present two protocols for a classical verifier to verifiably delegate a quantum computation to two non-communicating but entangled quantum provers. Our protocols have near-optimal complexity in terms of the total resources employed by the verifier and the honest provers, with the total number of operations of each party, including the number of entangled pairs of qubits required of the honest provers, scaling as $$O(g\log g)$$ for delegating a circuit of size g. This is in contrast to previous protocols, whose overhead in terms of resources employed, while polynomial, is far beyond what is feasible in practice. Our first protocol requires a number of rounds that is linear in the depth of the circuit being delegated, and is blind, meaning neither prover can learn the circuit or its input. The second protocol is not blind, but requires only a constant number of rounds of interaction.Our main technical innovation is an efficient rigidity theorem which allows a verifier to test that two entangled provers perform measurements specified by an arbitrary m-qubit tensor product of single-qubit Clifford observables on their respective halves of m shared EPR pairs, with a robustness that is independent of m. Our two-prover classical-verifier delegation protocols are obtained by combining this rigidity theorem with a single-prover quantum-verifier protocol for the verifiable delegation of a quantum computation, introduced by Broadbent.