## CryptoDB

### Dakshita Khurana

#### Affiliation: UCLA

#### Publications

**Year**

**Venue**

**Title**

2020

EUROCRYPT

Statistical ZAP Arguments
📺
Abstract

Dwork and Naor (FOCS'00) first introduced and constructed two message public coin witness indistinguishable proofs (ZAPs) for NP based on trapdoor permutations. Since then, ZAPs have also been obtained based on the decisional linear assumption on bilinear maps, and indistinguishability obfuscation, and have proven extremely useful in the design of several cryptographic primitives.
However, all known constructions of two-message public coin (or even publicly verifiable) proof systems only guarantee witness indistinguishability against computationally bounded verifiers.
In this paper, we construct the first public coin two message witness indistinguishable (WI) arguments for NP with {\em statistical} privacy, assuming quasi-polynomial hardness of the learning with errors (LWE) assumption. We also show that the same protocol has a super-polynomial simulator (SPS), which yields the first public-coin SPS statistical zero knowledge argument.
Prior to this, there were no known constructions of two-message publicly verifiable WI protocols under lattice assumptions, even satisfying the weaker notion of computational witness indistinguishability.

2020

EUROCRYPT

Low Error Efficient Computational Extractors in the CRS Model
📺
Abstract

In recent years, there has been exciting progress on building two-source extractors for sources with low min-entropy. Unfortunately, all known explicit constructions of two-source extractors in the low entropy regime suffer from non-negligible error, and building such extractors with negligible error remains an open problem. We investigate this problem in the computational setting, and obtain the following results.
We construct an explicit 2-source extractor, and even an explicit non-malleable extractor, with negligible error, for sources with low min-entropy, under computational assumptions in the Common Random String (CRS) model. More specifically, we assume that a CRS is generated once and for all, and allow the min-entropy sources to depend on the CRS. We obtain our constructions by using the following transformations.
- Building on the technique of [BHK11], we show a general transformation for converting any computational 2-source extractor (in the CRS model) into a computational non-malleable extractor (in the CRS model), for sources with similar min-entropy.
We emphasize that the resulting computational non-malleable extractor is resilient to arbitrarily many tampering attacks (a property that is impossible to achieve information theoretically). This may be of independent interest.
This transformation uses cryptography, and in particular relies on the sub-exponential hardness of the Decisional Diffie Hellman (DDH) assumption.
- Next, using the blueprint of [BACD+17], we give a transformation converting our computational non-malleable extractor (in the CRS model) into a computational 2-source extractor for sources with low min-entropy (in the CRS model). Our 2-source extractor works for unbalanced sources: specifically, we require one of the sources to be larger than a specific polynomial in the other.
This transformation does not incur any additional assumptions. Our analysis makes a novel use of the leakage lemma of Gentry and Wichs [GW11].

2019

CRYPTO

Non-interactive Non-malleability from Quantum Supremacy
📺
Abstract

We construct non-interactive non-malleable commitments without setup in the plain model, under well-studied assumptions.First, we construct non-interactive non-malleable commitments w.r.t. commitment for $$\epsilon \log \log n$$ tags for a small constant $$\epsilon > 0$$, under the following assumptions:1.Sub-exponential hardness of factoring or discrete log.2.Quantum sub-exponential hardness of learning with errors (LWE).
Second, as our key technical contribution, we introduce a new tag amplification technique. We show how to convert any non-interactive non-malleable commitment w.r.t. commitment for $$\epsilon \log \log n$$ tags (for any constant $$\epsilon >0$$) into a non-interactive non-malleable commitment w.r.t. replacement for $$2^n$$ tags. This part only assumes the existence of sub-exponentially secure non-interactive witness indistinguishable (NIWI) proofs, which can be based on sub-exponential security of the decisional linear assumption.Interestingly, for the tag amplification technique, we crucially rely on the leakage lemma due to Gentry and Wichs (STOC 2011). For the construction of non-malleable commitments for $$\epsilon \log \log n$$ tags, we rely on quantum supremacy. This use of quantum supremacy in classical cryptography is novel, and we believe it will have future applications. We provide one such application to two-message witness indistinguishable (WI) arguments from (quantum) polynomial hardness assumptions.

2018

CRYPTO

Promise Zero Knowledge and Its Applications to Round Optimal MPC
📺
Abstract

We devise a new partitioned simulation technique for MPC where the simulator uses different strategies for simulating the view of aborting adversaries and non-aborting adversaries. The protagonist of this technique is a new notion of promise zero knowledge (ZK) where the ZK property only holds against non-aborting verifiers. We show how to realize promise ZK in three rounds in the simultaneous-message model assuming polynomially hard DDH (or QR or N$$^{th}$$-Residuosity).We demonstrate the following applications of our new technique:We construct the first round-optimal (i.e., four round) MPC protocol for general functions based on polynomially hard DDH (or QR or N$$^{th}$$-Residuosity).We further show how to overcome the four-round barrier for MPC by constructing a three-round protocol for “list coin-tossing” – a slight relaxation of coin-tossing that suffices for most conceivable applications – based on polynomially hard DDH (or QR or N$$^{th}$$-Residuosity). This result generalizes to randomized input-less functionalities.
Previously, four round MPC protocols required sub-exponential-time hardness assumptions and no multi-party three-round protocols were known for any relaxed security notions with polynomial-time simulation against malicious adversaries.In order to base security on polynomial-time standard assumptions, we also rely upon a leveled rewinding security technique that can be viewed as a polynomial-time alternative to leveled complexity leveraging for achieving “non-malleability” across different primitives.

2018

TCC

Round Optimal Black-Box “Commit-and-Prove”
Abstract

Motivated by theoretical and practical considerations, an important line of research is to design secure computation protocols that only make black-box use of cryptography. An important component in nearly all the black-box secure computation constructions is a black-box commit-and-prove protocol. A commit-and-prove protocol allows a prover to commit to a value and prove a statement about this value while guaranteeing that the committed value remains hidden. A black-box commit-and-prove protocol implements this functionality while only making black-box use of cryptography.In this paper, we build several tools that enable constructions of round-optimal, black-box commit and prove protocols. In particular, assuming injective one-way functions, we design the first round-optimal, black-box commit-and-prove arguments of knowledge satisfying strong privacy against malicious verifiers, namely:Zero-knowledge in four rounds and,Witness indistinguishability in three rounds.
Prior to our work, the best known black-box protocols achieving commit-and-prove required more rounds.We additionally ensure that our protocols can be used, if needed, in the delayed-input setting, where the statement to be proven is decided only towards the end of the interaction. We also observe simple applications of our protocols towards achieving black-box four-round constructions of extractable and equivocal commitments.We believe that our protocols will provide a useful tool enabling several new constructions and easy round-efficient conversions from non-black-box to black-box protocols in the future.

2018

TCC

Upgrading to Functional Encryption
Abstract

The notion of Functional Encryption (FE) has recently emerged as a strong primitive with several exciting applications. In this work, we initiate the study of the following question: Can existing public key encryption schemes be “upgraded” to Functional Encryption schemes without changing their public keys or the encryption algorithm? We call a public-key encryption scheme with this property to be FE-compatible. Indeed, assuming ideal obfuscation, it is easy to see that every CCA-secure public-key encryption scheme is FE-compatible. Despite the recent success in using indistinguishability obfuscation to replace ideal obfuscation for many applications, we show that this phenomenon most likely will not apply here. We show that assuming fully homomorphic encryption and the learning with errors (LWE) assumption, there exists a CCA-secure encryption scheme that is provably not FE-compatible. We also show that a large class of natural CCA-secure encryption schemes proven secure in the random oracle model are not FE-compatible in the random oracle model.Nevertheless, we identify a key structure that, if present, is sufficient to provide FE-compatibility. Specifically, we show that assuming sub-exponentially secure iO and sub-exponentially secure one way functions, there exists a class of public key encryption schemes which we call Special-CCA secure encryption schemes that are in fact, FE-compatible. In particular, each of the following popular CCA secure encryption schemes (some of which existed even before the notion of FE was introduced) fall into the class of Special-CCA secure encryption schemes and are thus FE-compatible:1.[CHK04] when instantiated with the IBE scheme of [BB04].2.[CHK04] when instantiated with any Hierarchical IBE scheme.3.[PW08] when instantiated with any Lossy Trapdoor Function.

#### Program Committees

- TCC 2020
- Eurocrypt 2019

#### Coauthors

- Saikrishna Badrinarayanan (5)
- Rex Fernando (1)
- Ankit Garg (1)
- Vipul Goyal (2)
- Dennis Hofheinz (1)
- Tibor Jager (1)
- Abhishek Jain (3)
- Aayush Jain (1)
- Yael Tauman Kalai (5)
- Daniel Kraschewski (1)
- Hemanta K. Maji (3)
- Rafail Ostrovsky (2)
- Manoj Prabhakaran (1)
- Vanishree Rao (1)
- Ron D. Rothblum (1)
- Amit Sahai (11)
- Akshayaram Srinivasan (1)
- Ivan Visconti (1)
- Brent Waters (3)
- Mark Zhandry (1)