International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Cody Freitag

Publications

Year
Venue
Title
2022
CRYPTO
Time-Space Tradeoffs for Sponge Hashing: Attacks and Limitations for Short Collisions
Sponge hashing is a novel alternative to the popular Merkle-Damg\aa rd hashing design. The sponge construction has become increasingly popular in various applications, perhaps most notably, it underlies the SHA-3 hashing standard. Sponge hashing is parametrized by two numbers, $r$ and $c$ (bitrate and capacity, respectively), and by a fixed-size permutation on $r+c$ bits. In this work, we study the collision resistance of sponge hashing instantiated with a random permutation by adversaries with an arbitrary $S$-bit auxiliary advice input about the random permutation and $T$ queries. Recent work by Coretti et al.\ (CRYPTO '18) showed that such adversaries can find collisions (with respect to a random IV) with advantage $\Theta(ST^2/2^c + T^2/ 2^{r})$. Although the above attack formally breaks collision resistance in some range of parameters, its practical relevance is limited since the resulting collision is very long (on the order of $T$ blocks). Focusing on the task of finding \emph{short} collisions, we study the complexity of finding a $B$-block collision for a given parameter $B\ge 1$. We give several new attacks and limitations. Most notably, we give a new attack that results in a single-block collision and has advantage \begin{align*} \Omega \left(\left(\frac{S^{2}T}{2^{2c}}\right)^{2/3} + \frac{T^2}{2^r}\right). \end{align*} In some range of parameters, our attack has constant advantage of winning while the previously-known best attack has exponentially small advantage. To the best of our knowledge, this is the first natural application for which sponge hashing is \emph{provably less secure} than the corresponding instance of Merkle-Damg\aa rd hashing. Our attack relies on a novel connection between single-block collision finding in sponge hashing and the well-studied function inversion problem. We also give a general attack that works for any $B\ge 2$ and has advantage $\Omega({STB}/{2^{c}} + {T^2}/{2^{\min\{r,c\}}})$, adapting an idea of Akshima et al. (CRYPTO '20). We complement the above attacks with bounds on the best possible attacks. Specifically, we prove that there is a qualitative jump in the advantage of best possible attacks for finding unbounded-length collisions and those for finding very short collisions. Most notably, we prove (via a highly non-trivial compression argument) that the above attack is optimal for $B=2$ and in some range of parameters.
2021
TCC
Non-Malleable Time-Lock Puzzles and Applications 📺
Time-lock puzzles are a mechanism for sending messages "to the future", by allowing a sender to quickly generate a puzzle with an underlying message that remains hidden until a receiver spends a moderately large amount of time solving it. We introduce and construct a variant of a time-lock puzzle which is non-malleable, which roughly guarantees that it is impossible to "maul" a puzzle into one for a related message without solving it. Using non-malleable time-lock puzzles, we achieve the following applications: - The first fair non-interactive multi-party protocols for coin flipping and auctions in the plain model without setup. - Practically efficient fair multi-party protocols for coin flipping and auctions proven secure in the (auxiliary-input) random oracle model. As a key step towards proving the security of our protocols, we introduce the notion of functional non-malleability, which protects against tampering attacks that affect a specific function of the related messages. To support an unbounded number of participants in our protocols, our time-lock puzzles satisfy functional non-malleability in the fully concurrent setting. We additionally show that standard (non-functional) non-malleability is impossible to achieve in the concurrent setting (even in the random oracle model).
2020
EUROCRYPT
Continuous Verifiable Delay Functions 📺
We introduce the notion of a continuous verifiable delay function (cVDF): a function g which is (a) iteratively sequential---meaning that evaluating the iteration $g^{(t)}$ of g (on a random input) takes time roughly t times the time to evaluate g, even with many parallel processors, and (b) (iteratively) verifiable---the output of $g^{(t)}$ can be efficiently verified (in time that is essentially independent of t). In other words, the iterated function $g^{(t)}$ is a verifiable delay function (VDF) (Boneh et al., CRYPTO '18), having the property that intermediate steps of the computation (i.e., $g^{(t')}$ for t'<t) are publicly and continuously verifiable. We demonstrate that cVDFs have intriguing applications: (a) they can be used to construct public randomness beacons that only require an initial random seed (and no further unpredictable sources of randomness), (b) enable outsourceable VDFs where any part of the VDF computation can be verifiably outsourced, and (c) have deep complexity-theoretic consequences: in particular, they imply the existence of depth-robust moderately-hard Nash equilibrium problem instances, i.e. instances that can be solved in polynomial time yet require a high sequential running time. Our main result is the construction of a cVDF based on the repeated squaring assumption and the soundness of the Fiat-Shamir (FS) heuristic for constant-round proofs. We highlight that when viewed as a (plain) VDF, our construction requires a weaker FS assumption than previous ones (earlier constructions require the FS heuristic for either super-logarithmic round proofs, or for arguments).
2020
EUROCRYPT
SPARKs: Succinct Parallelizable Arguments of Knowledge 📺
We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK). This is an argument system with the following three properties for computing and proving a time T (non-deterministic) computation: - The prover's (parallel) running time is T + polylog T. (In other words, the prover's running time is essentially T for large computation times!) - The prover uses at most polylog T processors. - The communication complexity and verifier complexity are both polylog T. While the third property is standard in succinct arguments, the combination of all three is desirable as it gives a way to leverage moderate parallelism in favor of near-optimal running time. We emphasize that even a factor two overhead in the prover's parallel running time is not allowed. Our main results are the following, all for non-deterministic polynomial-time RAM computation. We construct (1) an (interactive) SPARK based solely on the existence of collision-resistant hash functions, and (2) a non-interactive SPARK based on any collision-resistant hash function and any SNARK with quasi-linear overhead (as satisfied by recent SNARK constructions).
2019
CRYPTO
Non-Uniformly Sound Certificates with Applications to Concurrent Zero-Knowledge 📺
We introduce the notion of non-uniformly sound certificates: succinct single-message (unidirectional) argument systems that satisfy a “best-possible security” against non-uniform polynomial-time attackers. In particular, no polynomial-time attacker with s bits of non-uniform advice can find significantly more than s accepting proofs for false statements. Our first result is a construction of non-uniformly sound certificates for all $$\mathbf{NP }$$ in the random oracle model, where the attacker’s advice can depend arbitrarily on the random oracle.We next show that the existence of non-uniformly sound certificates for $$\mathbf{P }$$ (and collision resistant hash functions) yields a public-coin constant-round fully concurrent zero-knowledge argument for $$\mathbf{NP } $$.