International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Hosein Hadipour

Publications

Year
Venue
Title
2024
TOSC
Cryptanalysis of QARMAv2
Hosein Hadipour Yosuke Todo
QARMAv2 is a general-purpose and hardware-oriented family of lightweight tweakable block ciphers (TBCs) introduced in ToSC 2023. QARMAv2, as a redesign of QARMAv1 with a longer tweak and tighter security margins, is also designed to be suitable for cryptographic memory protection and control flow integrity. The designers of QARMAv2 provided a relatively comprehensive security analysis in the design specification, e.g., some bounds for the number of attacked rounds in differential and boomerang analysis, together with some concrete impossible differential, zerocorrelation, and integral distinguishers. As one of the first third-party cryptanalysis of QARMAv2, Hadipour et al., [HGSE24] significantly improved the integral distinguishers of QARMAv2, and provided the longest concrete distinguishers of QARMAv2 up to now. However, they provided no key recovery attack based on their distinguishers. This paper delves into the cryptanalysis of QARMAv2 to enhance our understanding of its security. Given that the integral distinguishers of QARMAv2 are the longest concrete distinguishers for this cipher so far, we focus on integral attack. To this end, we first further improve the automatic tool introduced by Hadipour et al. [HSE23,HGSE24] for finding integral distinguishers of TBCs following the TWEAKEY framework. This new tool exploits the MixColumns property of QARMAv2 to find integral distinguishers more suitable for key recovery attacks. Then, we combine several techniques for integral key recovery attacks, e.g., Meet-in-the-middle and partial-sum techniques to build a fine-grained integral key recovery attack on QARMAv2. Notably, we demonstrate how to leverage the low data complexity of the integral distinguishers of QARMAv2 to reduce the memory complexity of the meet-in-the-middle technique. As a result, we successfully present the first concrete key recovery attacks on reduced-round versions of QARMAv2. This includes attacking 13 rounds of QARMAv2-64-128 with a single tweak block (T = 1), 14 rounds of QARMAv2-64-128 with two independent tweak blocks (T = 2), and 16 rounds of QARMAv2-128-256 with two independent tweak blocks (T = 2), all in an unbalanced setting. Our attacks do not compromise the claimed security of QARMAv2, but they shed more light on the cryptanalysis of this cipher.
2024
TOSC
Improved Search for Integral, Impossible Differential and Zero-Correlation Attacks: Application to Ascon, ForkSKINNY, SKINNY, MANTIS, PRESENT and QARMAv2
Integral, impossible-differential (ID), and zero-correlation (ZC) attacks are three of the most important attacks on block ciphers. However, manually finding these attacks can be a daunting task, which is why automated methods are becoming increasingly important. Most automatic tools regarding integral, ZC, and ID attacks have focused only on finding distinguishers rather than complete attacks. At EUROCRYPT 2023, Hadipour et al. proposed a generic and efficient constraint programming (CP) model based on satisfiability for finding ID, ZC, and integral distinguishers. This new model can be extended to a unified CP model for finding full key recovery attacks. However, it has limitations, including determining the contradiction location beforehand and a cell-wise model unsuitable for weakly aligned ciphers like Ascon and PRESENT. They also deferred developing a CP model for the partial-sum technique in key recovery as future work.In this paper, we enhance Hadipour et al.’s method in several ways. First, we remove the limitation of determining the contradiction location in advance. Second, we show how to extend the distinguisher model to a bit-wise model, considering the internal structure of S-boxes and keeping the model based on satisfiability. Third, we introduce a CP model for the partial-sum technique for the first time. To show the usefulness and versatility of our approach, we apply it to various designs, from strongly aligned ones like ForkSKINNY and QARMAv2 to weakly aligned ones such as Ascon and PRESENT, yielding significantly improved results. To mention a few of our results, we improve the integral distinguisher of QARMAv2-128 (resp. QARMAv2-64) by 7 (resp. 5) rounds, and the integral distinguisher of ForkSKINNY by 1 round, only thanks to our cell-wise distinguisher modelings. By using our new bit-wise modeling, our tool can find a group of 2155 5-round ID and ZC distinguishers for Ascon in only one run, taking a few minutes on a regular laptop. The new CP model for the partial-sum technique enhances integral attacks on all SKINNY variants, notably improving the best attack on SKINNY-n-n in the single-key setting by 1 round. We also enhance ID attacks on ForkSKINNY and provide the first analysis of this cipher in a limited reduced-round setting. Our methods are generic and applicable to other block ciphers.
2024
CRYPTO
Revisiting Differential-Linear Attacks via a Boomerang Perspective With Application to AES, Ascon, CLEFIA, SKINNY, PRESENT, KNOT, TWINE, WARP, LBlock, Simeck and SERPENT
In 1994, Langford and Hellman introduced differential-linear (DL) cryptanalysis, with the idea of decomposing the block cipher E into two parts, EU and EL, such that EU exhibits a high-probability differential trail, while EL has a high-correlation linear trail.Combining these trails forms a distinguisher for E, assuming independence between EU and EL. The dependency between the two parts of DL distinguishers remained unaddressed until EUROCRYPT 2019, where Bar-On et al. introduced the DLCT framework, resolving the issue up to one S-box layer. However, extending the DLCT framework to formalize the dependency between the two parts for multiple rounds remained an open problem. In this paper, we first tackle this problem from the perspective of boomerang analysis. By examining the relationships between DLCT, DDT, and LAT, we introduce a set of new tables facilitating the formulation of dependencies between the two parts of the DL distinguisher across multiple rounds. Then, we introduce a highly versatile and easy-to-use automatic tool for exploring DL distinguishers, inspired by automatic tools for boomerang distinguishers. This tool considers the dependency between differential and linear trails across multiple rounds. We apply our tool to various symmetric primitives, and in all applications, we either present the first DL distinguishers or enhance the best-known ones. We achieve successful results against Ascon, AES, SERPENT, PRESENT, SKINNY, TWINE, CLEFIA, WARP, LBlock, Simeck, and KNOT. Furthermore, we demonstrate that, in some cases, DL distinguishers outperform boomerang distinguishers significantly.
2023
EUROCRYPT
Finding the Impossible: Automated Search for Full Impossible-Differential, Zero-Correlation, and Integral Attacks
Impossible differential (ID), zero-correlation (ZC), and integral attacks are a family of important attacks on block ciphers. For example, the impossible differential attack was the first cryptanalytic attack on 7 rounds of AES. Evaluating the security of block ciphers against these attacks is very important but also challenging: Finding these attacks usually implies a combinatorial optimization problem involving many parameters and constraints that is very hard to solve using manual approaches. Automated solvers, such as Constraint Programming (CP) solvers, can help the cryptanalyst to find suitable attacks. However, previous CP-based methods focus on finding only the ID, ZC, and integral distinguishers, often only in a limited search space. Notably, none can be extended to a unified optimization problem for finding full attacks, including efficient key-recovery steps. In this paper, we present a new CP-based method to search for ID, ZC, and integral distinguishers and extend it to a unified constraint optimization problem for finding full ID, ZC, and integral attacks. To show the effectiveness and usefulness of our method, we applied it to several block ciphers, including SKINNY, CRAFT, SKINNYe-v2, and SKINNYee. For the ISO standard block cipher SKINNY, we significantly improve all existing ID, ZC, and integral attacks. In particular, we improve the integral attacks on SKINNY-n-3n and SKINNY-n-2n by 3 and 2 rounds, respectively, obtaining the best cryptanalytic results on these variants in the single-key setting. We improve the ZC attack on SKINNY-n-n (SKINNY-n-2n) by 2 (resp. 1) rounds. We also improve the ID attacks on all variants of SKINNY. Particularly, we improve the time complexity of the best previous single-tweakey (related-tweakey) ID attack on SKINNY-128-256 (resp. SKINNY-128-384) by a factor of $2^{22.57}$ (resp. $2^{15.39}$). On CRAFT, we propose a 21-round (20-round) ID (resp. ZC) attack, which improves the best previous single-tweakey attack by 2 (resp. 1) rounds. Using our new model, we also provide several practical integral distinguishers for reduced-round SKINNY, CRAFT, and Deoxys-BC. Our method is generic and applicable to other strongly aligned block ciphers.
2022
TCHES
Practical Multiple Persistent Faults Analysis
We focus on the multiple persistent faults analysis in this paper to fill existing gaps in its application in a variety of scenarios. Our major contributions are twofold. First, we propose a novel technique to apply persistent fault apply in the multiple persistent faults setting that decreases the number of survived keys and the required data. We demonstrate that by utilizing 1509 and 1448 ciphertexts, the number of survived keys after performing persistent fault analysis on AES in the presence of eight and sixteen faults can be reduced to only 29 candidates, whereas the best known attacks need 2008 and 1643 ciphertexts, respectively, with a time complexity of 250. Second, we develop generalized frameworks for retrieving the key in the ciphertext-only model. Our methods for both performing persistent fault attacks and key-recovery processes are highly flexible and provide a general trade-off between the number of required ciphertexts and the time complexity. To break AES with 16 persistent faults in the Sbox, our experiments show that the number of required ciphertexts can be decreased to 477 while the attack is still practical with respect to the time complexity. To confirm the accuracy of our methods, we performed several simulations as well as experimental validations on the ARM Cortex-M4 microcontroller with electromagnetic fault injection on AES and LED, which are two well-known block ciphers to validate the types of faults and the distribution of the number of faults in practice.
2022
TOSC
Integral Cryptanalysis of WARP based on Monomial Prediction
Hosein Hadipour Maria Eichlseder
WARP is a 128-bit block cipher published by Banik et al. at SAC 2020 as a lightweight alternative to AES. It is based on a generalized Feistel network and achieves the smallest area footprint among 128-bit block ciphers in many settings. Previous analysis results include integral key-recovery attacks on 21 out of 41 rounds. In this paper, we propose integral key-recovery attacks on up to 32 rounds by improving both the integral distinguisher and the key-recovery approach substantially. For the distinguisher, we show how to model the monomial prediction technique proposed by Hu et al. at ASIACRYPT 2020 as a SAT problem and thus create a bit-oriented model of WARP taking the key schedule into account. Together with two additional observations on the properties of WARP’s construction, we extend the best previous distinguisher by 2 rounds (as a classical integral distinguisher) or 4 rounds (for a generalized integral distinguisher). For the key recovery, we create a graph-based model of the round function and demonstrate how to manipulate the graph to obtain a cipher representation amenable to FFT-based key recovery.
2022
TOSC
Throwing Boomerangs into Feistel Structures: Application to CLEFIA, WARP, LBlock, LBlock-s and TWINE
Automatic tools to search for boomerang distinguishers have seen significant advances over the past few years. However, most previous work has focused on ciphers based on a Substitution Permutation Network (SPN), while analyzing the Feistel structure is of great significance. Boukerrou et al. recently provided a theoretical framework to formulate the boomerang switch over multiple Feistel rounds, but they did not provide an automatic tool to find distinguishers. In this paper, by enhancing the recently proposed method by Hadipour et al., we provide an automatic tool to search for boomerang distinguishers and apply it to block ciphers following the Generalized Feistel Structure (GFS). Applying our tool to a wide range of GFS ciphers, we show that it significantly improves the best previous results on boomerang analysis. In particular, we improve the best previous boomerang distinguishers for 20 and 21 rounds of WARP by a factor of 238.28 and 236.56, respectively. Thanks to he effectiveness of our method, we can extend the boomerang distinguishers of WARP by two rounds and distinguish 23 rounds of this cipher from a random permutation. Applying our method to the internationally-standardized cipher CLEFIA, we achieve a 9-round boomerang distinguisher which improves the best previous boomerang distinguisher by one round. Based on this distinguisher, we build a key-recovery attack on 11 rounds of CLEFIA, which improves the best previous sandwich attack on this cipher by one round. We also apply our method to LBlock, LBlock-s, and TWINE and improve the best previous boomerang distinguisher of these ciphers.
2021
TOSC
Improved Rectangle Attacks on SKINNY and CRAFT 📺
Hosein Hadipour Nasour Bagheri Ling Song
The boomerang and rectangle attacks are adaptions of differential cryptanalysis that regard the target cipher E as a composition of two sub-ciphers, i.e., E = E1 ∘ E0, to construct a distinguisher for E with probability p2q2 by concatenating two short differential trails for E0 and E1 with probability p and q respectively. According to the previous research, the dependency between these two differential characteristics has a great impact on the probability of boomerang and rectangle distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such dependency that regards E as three parts, i.e., E = E1 ∘ Em ∘ E0, where Em contains the dependency between two differential trails, satisfying some differential propagation with probability r. Accordingly, the entire probability is p2q2r. Recently, Song et al. have proposed a general framework to identify the actual boundaries of Em and systematically evaluate the probability of Em with any number of rounds, and applied their method to accurately evaluate the probabilities of the best SKINNY’s boomerang distinguishers. In this paper, using a more advanced method to search for boomerang distinguishers, we show that the best previous boomerang distinguishers for SKINNY can be significantly improved in terms of probability and number of rounds. More precisely, we propose related-tweakey boomerang distinguishers for up to 19, 21, 23, and 25 rounds of SKINNY-64-128, SKINNY-128-256, SKINNY-64-192 and SKINNY-128-384 respectively, which improve the previous boomerang distinguishers of these variants of SKINNY by 1, 2, 1, and 1 round respectively. Based on the improved boomerang distinguishers for SKINNY, we provide related-tweakey rectangle attacks on 23 rounds of SKINNY-64-128, 24 rounds of SKINNY-128-256, 29 rounds of SKINNY-64-192, and 30 rounds of SKINNY-128-384. It is worth noting that our improved related-tweakey rectangle attacks on SKINNY-64-192, SKINNY-128-256 and SKINNY-128-384 can be directly applied for the same number of rounds of ForkSkinny-64-192, ForkSkinny-128-256 and ForkSkinny-128-384 respectively. CRAFT is another SKINNY-like tweakable block cipher for which we provide the security analysis against rectangle attack for the first time. As a result, we provide a 14-round boomerang distinguisher for CRAFT in the single-tweak model based on which we propose a single-tweak rectangle attack on 18 rounds of this cipher. Moreover, following the previous research regarding the evaluation of switching in multiple rounds of boomerang distinguishers, we also introduce new tools called Double Boomerang Connectivity Table (DBCT), LBCT⫤, and UBCT⊨ to evaluate the boomerang switch through the multiple rounds more accurately.
2020
TOSC
Comprehensive security analysis of CRAFT 📺
CRAFT is a lightweight block cipher, designed to provide efficient protection against differential fault attacks. It is a tweakable cipher that includes 32 rounds to produce a ciphertext from a 64-bit plaintext using a 128-bit key and 64-bit public tweak. In this paper, compared to the designers’ analysis, we provide a more detailed analysis of CRAFT against differential and zero-correlation cryptanalysis, aiming to provide better distinguishers for the reduced rounds of the cipher. Our distinguishers for reduced-round CRAFT cover a higher number of rounds compared to the designers’ analysis. In our analysis, we observed that, for any number of rounds, the differential effect of CRAFT has an extremely higher probability compared to any differential trail. As an example, while the best trail for 11 rounds of the cipher has a probability of at least 2−80, we present a differential with probability 2−49.79, containing 229.66 optimal trails, all with the same optimum probability of 2−80. Next, we use a partitioning technique, based on optimal expandable truncated trails to provide a better estimation of the differential effect on CRAFT. Thanks to this technique, we are able to find differential distinguishers for 9, 10, 11, 12, 13, and 14 rounds of the cipher in single tweak model with the probabilities of at least 2−40.20, 2−45.12, 2−49.79, 2−54.49, 2−59.13, and 2−63.80, respectively. These probabilities should be compared with the best distinguishers provided by the designers in the same model for 9 and 10 rounds of the cipher with the probabilities of at least 2−54.67 and 2−62.61, respectively. In addition, we consider the security of CRAFT against the new concept of related tweak zero-correlation (ZC) linear cryptanalysis and present a new distinguisher which covers 14 rounds of the cipher, while the best previous ZC distinguisher covered 13 rounds. Thanks to the related tweak ZC distinguisher for 14 rounds of the cipher, we also present 14 rounds integral distinguishers in related tweak mode of the cipher. Although the provided analysis does not compromise the cipher, we think it provides a better insight into the designing of CRAFT.