International Association for Cryptologic Research

International Association
for Cryptologic Research


Lukas Stennes


Simon's Algorithm and Symmetric Crypto: Generalizations and Automatized Applications 📺
In this paper we deepen our understanding of how to apply Simon's algorithm to break symmetric cryptographic primitives. On the one hand, we automate the search for new attacks. Using this approach we automatically find the first efficient key-recovery attacks against constructions like 5-round MISTY L-FK or 5-round Feistel-FK (with internal permutation) using Simon's algorithm. On the other hand, we study generalizations of Simon's algorithm using non-standard Hadamard matrices, with the aim to expand the quantum symmetric cryptanalysis toolkit with properties other than the periods. Our main conclusion here is that none of these generalizations can accomplish that, and we conclude that exploiting non-standard Hadamard matrices with quantum computers to break symmetric primitives will require fundamentally new attacks.
Breaking HALFLOOP-24
HALFLOOP-24 is a tweakable block cipher that is used to protect automatic link establishment messages in high frequency radio, a technology commonly used by government agencies and industries that need highly robust long-distance communications. We present the first public cryptanalysis of HALFLOOP-24 and show that HALFLOOP-24, despite its key size of 128 bits, is far from providing 128 bit security. More precisely, we give attacks for ciphertext-only, known-plaintext, chosen-plaintext and chosen-ciphertext scenarios. In terms of their complexities, most of them can be considered practical. However, in the real world, the amount of available data is too low for our attacks to work. Our strongest attack, a boomerang key-recovery, finds the first round key with less than 210 encryption and decryption queries. In conclusion, we strongly advise against using HALFLOOP-24.