International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Yann Rotella

Publications

Year
Venue
Title
2021
EUROCRYPT
2021
TOSC
Algebraic Collision Attacks on Keccak
In this paper, we analyze the collision resistance of the two smallest versions of Keccak which have a width of 200 and 400 bits respectively. We show that algebraic and linearization techniques can serve collision cryptanalysis by using some interesting properties of the linear part of the round function of Keccak. We present an attack on the Keccak versions that could be used in lightweight cryptography reduced to two rounds. For Keccak[40, 160] (resp. Keccak[72, 128] and Keccak[144, 256]) our attack has a computational complexity of 273 (resp. 252.5 and 2101.5) Keccak calls.
2020
TOSC
The Subterranean 2.0 Cipher Suite 📺
This paper presents the Subterranean 2.0 cipher suite that can be used for hashing, MAC computation, stream encryption and several types of authenticated encryption schemes. At its core it has a duplex object with a 257-bit state and a lightweight single-round permutation. This makes Subterranean 2.0 very well suited for low-area and low-energy implementations in dedicated hardware.
2020
TOSC
Algebraic and Higher-Order Differential Cryptanalysis of Pyjamask-96 📺
Cryptographic competitions, like the ongoing NIST call for lightweight cryptography, always provide a thriving research environment, where new interesting ideas are proposed and new cryptographic insights are made. One proposal for this NIST call that is accepted for the second round is Pyjamask. Pyjamask is an authenticated encryption scheme that builds upon two block ciphers, Pyjamask-96 and Pyjamask-128, that aim to minimize the number of AND operations at the cost of a very strong linear layer. A side-effect of this goal is a slow growth in the algebraic degree. In this paper, we focus on the block cipher Pyjamask-96 and are able to provide a theoretical key-recovery attack reaching 14 (out of 14) rounds as well as a practical attack on 8 rounds. We do this by combining higher-order differentials with an in-depth analysis of the system of equations gotten for 2.5 rounds of Pyjamask-96. The AEAD-scheme Pyjamask itself is not threatened by the work in this paper.
2018
TOSC
State-Recovery Attacks on Modified Ketje Jr
In this article we study the security of the authenticated encryption algorithm Ketje against divide-and-conquer attacks. Ketje is a third-round candidate in the ongoing CAESAR competition, which shares most of its design principles with the SHA-3 hash function. Several versions of Ketje have been submitted, with different sizes for its internal state. We describe several state-recovery attacks on the smaller variant, called Ketje Jr. We show that if one increases the amount of keystream output after each round from 16 bits to 40 bits, Ketje Jr becomes vulnerable to divide-and-conquer attacks with time complexities 271.5 for the original version and 282.3 for the current tweaked version, both with a key of 96 bits. We also propose a similar attack when considering rates of 32 bits for the non-tweaked version. Our findings do not threaten the security of Ketje, but should be taken as a warning against potential future modifications that would aim at increasing the performance of the algorithm.
2018
ASIACRYPT
Cryptanalysis of MORUS
MORUS is a high-performance authenticated encryption algorithm submitted to the CAESAR competition, and recently selected as a finalist. There are three versions of MORUS: MORUS-640 with a 128-bit key, and MORUS-1280 with 128-bit or 256-bit keys. For all versions the security claim for confidentiality matches the key size. In this paper, we analyze the components of this algorithm (initialization, state update and tag generation), and report several results.As our main result, we present a linear correlation in the keystream of full MORUS, which can be used to distinguish its output from random and to recover some plaintext bits in the broadcast setting. For MORUS-1280, the correlation is $$2^{-76}$$, which can be exploited after around $$2^{152}$$ encryptions, less than what would be expected for a 256-bit secure cipher. For MORUS-640, the same attack results in a correlation of $$2^{-73}$$, which does not violate the security claims of the cipher.To identify this correlation, we make use of rotational invariants in MORUS using linear masks that are invariant by word-rotations of the state. This motivates us to introduce single-word versions of MORUS called MiniMORUS, which simplifies the analysis. The attack has been implemented and verified on MiniMORUS, where it yields a correlation of $$2^{-16}$$.We also study reduced versions of the initialization and finalization of MORUS, aiming to evaluate the security margin of these components. We show a forgery attack when finalization is reduced from 10 steps to 3, and a key-recovery attack in the nonce-misuse setting when initialization is reduced from 16 steps to 10. These additional results do not threaten the full MORUS, but studying all aspects of the design is useful to understand its strengths and weaknesses.
2018
ASIACRYPT
On the Concrete Security of Goldreich’s Pseudorandom Generator
Local pseudorandom generators allow to expand a short random string into a long pseudo-random string, such that each output bit depends on a constant number d of input bits. Due to its extreme efficiency features, this intriguing primitive enjoys a wide variety of applications in cryptography and complexity. In the polynomial regime, where the seed is of size n and the output of size $$n^{\textsf {s}}$$ for $$\textsf {s}> 1$$ , the only known solution, commonly known as Goldreich’s PRG, proceeds by applying a simple d-ary predicate to public random size-d subsets of the bits of the seed.While the security of Goldreich’s PRG has been thoroughly investigated, with a variety of results deriving provable security guarantees against class of attacks in some parameter regimes and necessary criteria to be satisfied by the underlying predicate, little is known about its concrete security and efficiency. Motivated by its numerous theoretical applications and the hope of getting practical instantiations for some of them, we initiate a study of the concrete security of Goldreich’s PRG, and evaluate its resistance to cryptanalytic attacks. Along the way, we develop a new guess-and-determine-style attack, and identify new criteria which refine existing criteria and capture the security guarantees of candidate local PRGs in a more fine-grained way.
2017
CRYPTO
2017
TOSC
Boolean functions with restricted input and their robustness; application to the FLIP cipher
We study the main cryptographic features of Boolean functions (balancedness, nonlinearity, algebraic immunity) when, for a given number n of variables, the input to these functions is restricted to some subset E of
2016
CRYPTO
2016
FSE