International Association for Cryptologic Research

International Association
for Cryptologic Research


Florian Stolz


Risky Translations: Securing TLBs against Timing Side Channels
Microarchitectural side-channel vulnerabilities in modern processors are known to be a powerful attack vector that can be utilized to bypass common security boundaries like memory isolation. As shown by recent variants of transient execution attacks related to Spectre and Meltdown, those side channels allow to leak data from the microarchitecture to the observable architectural state. The vast majority of attacks currently build on the cache-timing side channel, since it is easy to exploit and provides a reliable, fine-grained communication channel. Therefore, many proposals for side-channel secure cache architectures have been made. However, caches are not the only source of side-channel leakage in modern processors and mitigating the cache side channel will inevitably lead to attacks exploiting other side channels. In this work, we focus on defeating side-channel attacks based on page translations.It has been shown that the Translation Lookaside Buffer (TLB) can be exploited in a very similar fashion to caches. Since the main caches and the TLB share many features in their architectural design, the question arises whether existing countermeasures against cache-timing attacks can be used to secure the TLB. We analyze state-ofthe-art proposals for side-channel secure cache architectures and investigate their applicability to TLB side channels. We find that those cache countermeasures are notdirectly applicable to TLBs, and propose TLBcoat, a new side-channel secure TLB architecture. We provide evidence of TLB side-channel leakage on RISC-V-based Linux systems, and demonstrate that TLBcoat prevents this leakage. We implement TLBcoat using the gem5 simulator and evaluate its performance using the PARSEC benchmark suite.
LifeLine for FPGA Protection: Obfuscated Cryptography for Real-World Security 📺
Over the last decade attacks have repetitively demonstrated that bitstream protection for SRAM-based FPGAs is a persistent problem without a satisfying solution in practice. Hence, real-world hardware designs are prone to intellectual property infringement and malicious manipulation as they are not adequately protected against reverse-engineering.In this work, we first review state-of-the-art solutions from industry and academia and demonstrate their ineffectiveness with respect to reverse-engineering and design manipulation. We then describe the design and implementation of novel hardware obfuscation primitives based on the intrinsic structure of FPGAs. Based on our primitives, we design and implement LifeLine, a hardware design protection mechanism for FPGAs using hardware/software co-obfuscated cryptography. We show that LifeLine offers effective protection for a real-world adversary model, requires minimal integration effort for hardware designers, and retrofits to already deployed (and so far vulnerable) systems.